Previous |  Up |  Next

Article

Title: Some bounds for the annihilators of local cohomology and Ext modules (English)
Author: Fathi, Ali
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 1
Year: 2022
Pages: 265-284
Summary lang: English
.
Category: math
.
Summary: Let $\mathfrak a$ be an ideal of a commutative Noetherian ring $R$ and $t$ be a nonnegative integer. Let $M$ and $N$ be two finitely generated $R$-modules. In certain cases, we give some bounds under inclusion for the annihilators of ${\rm Ext}^t_R(M, N)$ and ${\rm H}^t_{\mathfrak a}(M)$ in terms of minimal primary decomposition of the zero submodule of $M$, which are independent of the choice of minimal primary decomposition. Then, by using those bounds, we compute the annihilators of local cohomology and Ext modules in certain cases. (English)
Keyword: local cohomology module
Keyword: Ext module
Keyword: annihilator
Keyword: primary decomposition
MSC: 13D07
MSC: 13D45
idZBL: Zbl 07511566
idMR: MR4389119
DOI: 10.21136/CMJ.2021.0456-20
.
Date available: 2022-03-25T08:32:37Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149586
.
Reference: [1] Atazadeh, A., Sedghi, M., Naghipour, R.: On the annihilators and attached primes of top local cohomology modules.Arch. Math. 102 (2014), 225-236. Zbl 1292.13004, MR 3181712, 10.1007/s00013-014-0629-1
Reference: [2] Atazadeh, A., Sedghi, M., Naghipour, R.: Cohomological dimension filtration and annihilators of top local cohomology modules.Colloq. Math. 139 (2015), 25-35. Zbl 1314.13033, MR 3332732, 10.4064/cm139-1-2
Reference: [3] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra.Addison-Wesley, Reading (1969). Zbl 0175.03601, MR 0242802
Reference: [4] Bahmanpour, K.: Annihilators of local cohomology modules.Commun. Algebra 43 (2015), 2509-2515. Zbl 1323.13003, MR 3344203, 10.1080/00927872.2014.900687
Reference: [5] Bahmanpour, K., A'zami, J., Ghasemi, G.: On the annihilators of local cohomology modules.J. Algebra 363 (2012), 8-13. Zbl 1262.13027, MR 2925842, 10.1016/j.jalgebra.2012.03.026
Reference: [6] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). Zbl 0903.13006, MR 1613627, 10.1017/CBO9780511629204
Reference: [7] Bruns, W., Herzog, J.: Cohen-Macaulay Rings.Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). Zbl 0909.13005, MR 1251956, 10.1017/CBO9780511608681
Reference: [8] Chu, L., Tang, Z., Tang, H.: A note on almost Cohen-Macaulay modules.J. Algebra Appl. 14 (2015), Article ID 1550136, 7 pages. Zbl 1353.13018, MR 3392585, 10.1142/S0219498815501364
Reference: [9] Divaani-Aazar, K., Naghipour, R., Tousi, M.: Cohomological dimension of certain algebraic varieties.Proc. Am. Math. Soc. 130 (2002), 3537-3544. Zbl 0998.13007, MR 1918830, 10.1090/S0002-9939-02-06500-0
Reference: [10] Huneke, C.: Lectures on local cohomology.Interactions Between Homotopy Theory and Algebra Contemporary Mathematics 436. AMS, Providence (2007), 51-99. Zbl 1127.13300, MR 2355770, 10.1090/conm/436
Reference: [11] Lynch, L. R.: Annihilators of top local cohomology.Commun. Algebra 40 (2012), 542-551. Zbl 1251.13015, MR 2889480, 10.1080/00927872.2010.533223
Reference: [12] Matsumura, H.: Commutative Ring Theory.Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). Zbl 0603.13001, MR 0879273, 10.1017/CBO9781139171762
Reference: [13] Sharp, R. Y.: Gorenstein modules.Math. Z. 115 (1970), 117-139. Zbl 0186.07403, MR 0263801, 10.1007/BF01109819
Reference: [14] Sharp, R. Y.: On Gorenstein modules over a complete Cohen-Macaulay local ring.Q. J. Math., Oxf. II. Ser. 22 (1971), 425-434 \99999DOI99999 10.1093/qmath/22.3.425 . Zbl 0221.13016, MR 0289504, 10.1093/qmath/22.3.425
.

Files

Files Size Format View
CzechMathJ_72-2022-1_16.pdf 316.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo