Previous |  Up |  Next

Article

Title: On the unit group of a semisimple group algebra $\mathbb {F}_qSL(2, \mathbb {Z}_5)$ (English)
Author: Sharma, Rajendra K.
Author: Mittal, Gaurav
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 1
Year: 2022
Pages: 1-10
Summary lang: English
.
Category: math
.
Summary: We give the characterization of the unit group of $\mathbb {F}_qSL(2, \mathbb {Z}_5)$, where $\mathbb {F}_q$ is a finite field with $q = p^k$ elements for prime $p > 5,$ and $SL(2, \mathbb {Z}_5)$ denotes the special linear group of $2 \times 2$ matrices having determinant $1$ over the cyclic group $\mathbb {Z}_5$. (English)
Keyword: unit group
Keyword: finite field
Keyword: Wedderburn decomposition
MSC: 16U60
MSC: 20C05
idZBL: Zbl 07547237
idMR: MR4387464
DOI: 10.21136/MB.2021.0104-20
.
Date available: 2022-04-17T18:05:51Z
Last updated: 2022-09-06
Stable URL: http://hdl.handle.net/10338.dmlcz/149589
.
Reference: [1] Creedon, L., Gildea, J.: The structure of the unit group of the group algebra $F_{2^k}D_8$.Can. Math. Bull. 54 (2011), 237-243. Zbl 1242.16033, MR 2884238, 10.4153/CMB-2010-098-5
Reference: [2] Ferraz, R. A.: Simple components of the center of $FG/J(FG)$.Commun. Algebra 36 (2008), 3191-3199. Zbl 1156.16019, MR 2441107, 10.1080/00927870802103503
Reference: [3] Gildea, J.: The structure of the unit group of the group algebra $F_{2^k}A_4$.Czech. Math. J. 61 (2011), 531-539. Zbl 1237.16035, MR 2905421, 10.1007/s10587-011-0071-5
Reference: [4] Gildea, J., Monaghan, F.: Units of some group algebras of groups of order 12 over any finite field of characteristic 3.Algebra Discrete Math. 11 (2011), 46-58. Zbl 1256.16023, MR 2868359
Reference: [5] Hurley, T.: Group rings and rings of matrices.Int. J. Pure Appl. Math. 31 (2006), 319-335. Zbl 1136.20004, MR 2266951
Reference: [6] Hurley, T.: Convolutional codes from units in matrix and group rings.Int. J. Pure Appl. Math. 50 (2009), 431-463. Zbl 1173.94452, MR 2490664
Reference: [7] Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications.Cambridge University Press, Cambridge (1994). Zbl 0820.11072, MR 1294139, 10.1017/CBO9781139172769
Reference: [8] Maheshwari, S., Sharma, R. K.: The unit group of group algebra $F_qSL(2;Z_3)$.J. Algebra Comb. Discrete Struct. Appl. 3 (2016), 1-6. Zbl 1429.16027, MR 3450932, 10.13069/jacodesmath.83854
Reference: [9] Makhijani, N., Sharma, R. K., Srivastava, J. B.: A note on units of $F_{p^m}[D_{2p^m}]$.Acta Math. Acad. Paedagog. Nyházi. (N.S.) 30 (2014), 17-25. Zbl 1324.16035, MR 3285078
Reference: [10] Makhijani, N., Sharma, R. K., Srivastava, J. B.: The unit group of algebra of circulant matrices.Int. J. Group Theory 3 (2014), 13-16. Zbl 1335.16028, MR 3181770, 10.1142/S0219498813500904
Reference: [11] Makhijani, N., Sharma, R. K., Srivastava, J. B.: The unit group of $F_q[D_{30}]$.Serdica Math. J. 41 (2015), 185-198. MR 3363601
Reference: [12] Makhijani, N., Sharma, R. K., Srivastava, J. B.: A note on the structure of $F_{p^k}A_5/J(F_{p^k}A_5)$.Acta Sci. Math. 82 (2016), 29-43. Zbl 1399.16065, MR 3526335, 10.14232/actasm-014-311-2
Reference: [13] Makhijani, N., Sharma, R. K., Srivastava, J. B.: The unit group of some special semi-simple group algebras.Quaest. Math. 39 (2016), 9-28. Zbl 1445.16023, MR 3483353, 10.2989/16073606.2015.1024410
Reference: [14] Makhijani, N., Sharma, R. K., Srivastava, J. B.: Units in finite dihedral and quaternion group algebras.J. Egypt. Math. Soc. 24 (2016), 5-7. Zbl 1336.16042, MR 3456857, 10.1016/j.joems.2014.08.001
Reference: [15] Mittal, G., Sharma, R.: On unit group of finite semisimple group algebras of nonmetabelian groups upto order 72.Math. Bohem. 146 (2021), 429-455. MR 4336549, 10.21136/MB.2021.0116-19
Reference: [16] Perlis, S., Walker, G. L.: Abelian group algebras of finite order.Trans. Am. Math. Soc. 68 (1950), 420-426. Zbl 0038.17301, MR 0034758, 10.1090/S0002-9947-1950-0034758-3
Reference: [17] Milies, C. Polcino, Sehgal, S. K., Sudarshan, S.: An Introduction to Group Rings.Algebras and Applications 1. Kluwer Academic Publishers, Dordrecht (2002). Zbl 0997.20003, MR 1896125, 10.1007/978-94-010-0405-3
Reference: [18] Sharma, R. K., Srivastava, J. B., Khan, M.: The unit group of $FA_4$.Publ. Math. 71 (2007), 21-26. Zbl 1135.16033, MR 2340031
Reference: [19] Sharma, R. K., Srivastava, J. B., Khan, M.: The unit group of $FS_3$.Acta Math. Acad. Paedagog. Nyházi. (N.S.) 23 (2007), 129-142. Zbl 1135.16034, MR 2368934
Reference: [20] Sharma, R. K., Yadav, P.: Unit group of algebra of circulant matrices.Int. J. Group Theory 2 (2013), 1-6. Zbl 1306.16037, MR 3053357
Reference: [21] Tang, G., Wei, Y., Li, Y.: Unit groups of group algebras of some small groups.Czech. Math. J. 64 (2014), 149-157. Zbl 1340.16040, MR 3247451, 10.1007/s10587-014-0090-0
.

Files

Files Size Format View
MathBohem_147-2022-1_1.pdf 221.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo