Previous |  Up |  Next

Article

Title: Sofic groups are not locally embeddable into finite Moufang loops (English)
Author: Ghumashyan, Heghine
Author: Guričan, Jaroslav
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 1
Year: 2022
Pages: 11-18
Summary lang: English
.
Category: math
.
Summary: We shall show that there exist sofic groups which are not locally embeddable into finite Moufang loops. These groups serve as counterexamples to a problem and two conjectures formulated in the paper by M. Vodička, P. Zlatoš (2019). (English)
Keyword: group
Keyword: diassociative IP loop
Keyword: Moufang loop
Keyword: finite embeddability property
Keyword: local embeddability
MSC: 05B15
MSC: 05C25
MSC: 20E25
MSC: 20N05
idZBL: Zbl 07547238
idMR: MR4387465
DOI: 10.21136/MB.2021.0065-20
.
Date available: 2022-04-17T18:06:29Z
Last updated: 2022-09-06
Stable URL: http://hdl.handle.net/10338.dmlcz/149595
.
Reference: [1] Baumslag, G., Solitar, D.: Some two-generator one-relator non-Hopfian groups.Bull. Am. Math. Soc. 68 (1962), 199-201. Zbl 0108.02702, MR 0142635, 10.1090/S0002-9904-1962-10745-9
Reference: [2] Ceccherini-Silberstein, T., Coornaert, M.: Cellular Automata and Groups.Springer Monographs in Mathematics. Springer, Berlin (2010). Zbl 1218.37004, MR 2683112, 10.1007/978-3-642-14034-1
Reference: [3] Collins, B., Dykema, K. J.: Free products of sofic groups with amalgamation over monotileably amenable groups.Münster J. Math. 4 (2011), 101-118. Zbl 1242.43003, MR 2869256
Reference: [4] Drápal, A.: A simplified proof of Moufang's theorem.Proc. Am. Math. Soc. 139 (2011), 93-98. Zbl 1215.20059, MR 2729073, 10.1090/S0002-9939-2010-10501-4
Reference: [5] Glebsky, L. Y., Gordon, Y. I.: On approximation of amenable groups by finite quasigroups.J. Math. Sci. 140 (2007), 369-375. Zbl 1159.43300, MR 2183215, 10.1007/s10958-007-0446-1
Reference: [6] Henkin, L.: Two concepts from the theory of models.J. Symb. Log. 21 (1956), 28-32. Zbl 0071.00701, MR 0075895, 10.2307/2268482
Reference: [7] Higman, G., Neumann, B. H., Neumann, H.: Embedding theorems for groups.J. Lond. Math. Soc. 24 (1949), 247-254. Zbl 0034.30101, MR 0032641, 10.1112/jlms/s1-24.4.247
Reference: [8] Lyndon, R. C., Schupp, P. E.: Combinatorial Group Theory.Classics in Mathematics. Springer, Berlin (2001). Zbl 0997.20037, MR 1812024, 10.1007/978-3-642-61896-3
Reference: [9] Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations.Dover Books on Mathematics. Dover Publications, Mineola (2004). Zbl 1130.20307, MR 2109550
Reference: [10] Mal'tsev, A. I.: On a general method for obtaining local theorems in group theory.Ivanov. Gos. Ped. Inst. Uč. Zap. Fiz.-Mat. Fak. 1 (1941), 3-9 Russian. MR 0075939
Reference: [11] Mal'tsev, A. I.: On homomorphisms onto finite groups.Twelve Papers in Algebra American Mathematical Society Translations: Series 2, 119. American Mathematical Society (1983), 67-79. Zbl 0511.20026, 10.1090/trans2/119
Reference: [12] Meskin, S.: Nonresidually finite one-relator groups.Trans. Am. Math. Soc. 164 (1972), 105-114. Zbl 0245.20028, MR 285589, 10.2307/1995962
Reference: [13] Pflugfelder, H. O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics 7. Heldermann Verlag, Berlin (1990). Zbl 0715.20043, MR 1125767
Reference: [14] Vershik, A. M., Gordon, E. I.: Groups that are locally embeddable in the class of finite groups.St. Petersbg. Math. J. 9 (1998), 49-67. Zbl 0898.20016, MR 1458419
Reference: [15] Vodička, M., Zlatoš, P.: The finite embeddability property for IP loops and local embeddability of groups into finite IP loops.Ars Math. Contemp. 17 (2019), 535-554. Zbl 1442.20040, MR 4041359, 10.26493/1855-3974.1884.5cb
Reference: [16] Weiss, B.: Monotileable amenable groups.Topology, Ergodic Theory, Real Algebraic Geometry: Rokhlin's Memorial American Mathematical Society Translations: Series 2, 202. American Mathematical Society (2001), 257-262. Zbl 0982.22004, MR 1819193, 10.1090/trans2/202/18
Reference: [17] Ziman, M.: Extensions of Latin subsquares and local embeddability of groups and group algebras.Quasigroups Relat. Syst. 11 (2004), 115-125. Zbl 1060.20057, MR 2064165
.

Files

Files Size Format View
MathBohem_147-2022-1_2.pdf 211.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo