Title:
|
A new optimized iterative method for solving $M$-matrix linear systems (English) |
Author:
|
Fakharzadeh Jahromi, Alireza |
Author:
|
Nasseri Shams, Nafiseh |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
67 |
Issue:
|
3 |
Year:
|
2022 |
Pages:
|
251-272 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we present a new iterative method for solving a linear system, whose coefficient matrix is an $M$-matrix. This method includes four parameters that are obtained by the accelerated overrelaxation (AOR) splitting and using the Taylor approximation. First, under some standard assumptions, we establish the convergence properties of the new method. Then, by minimizing the Frobenius norm of the iteration matrix, we find the optimal parameters. Meanwhile, numerical results on test examples show the efficiency of the new proposed method in contrast with the Hermitian and skew-Hermitian splitting (HSS), AOR methods and a modified version of the AOR (QAOR) iteration. (English) |
Keyword:
|
linear system |
Keyword:
|
$M$-matrix |
Keyword:
|
optimal parameter |
Keyword:
|
Taylor approximation |
Keyword:
|
optimization |
MSC:
|
65F10 |
MSC:
|
90C99 |
idZBL:
|
Zbl 07547195 |
idMR:
|
MR4409306 |
DOI:
|
10.21136/AM.2021.0246-20 |
. |
Date available:
|
2022-04-14T13:34:14Z |
Last updated:
|
2024-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150314 |
. |
Reference:
|
[1] Avdelas, G., Hadjidimos, A., Yeyios, A.: Some theoretical and computational results concerning the accelerated overrelaxation (AOR) method.Math., Rev. Anal. Numér. Théor. Approximation, Anal. Numér. Théor. Approximation 9 (1980), 5-10. Zbl 0445.65018, MR 0617249 |
Reference:
|
[2] Bai, Z., Chi, X.: Asymptotically optimal successive overrelaxation methods for systems of linear equations.J. Comput. Math. 21 (2003), 503-612. Zbl 1031.65050, MR 1999971 |
Reference:
|
[3] Bai, Z.-Z., Golub, G. H., Ng, M. K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems.SIAM J. Matrix Anal. Appl. 24 (2003), 603-626. Zbl 1036.65032, MR 1972670, 10.1137/S0895479801395458 |
Reference:
|
[4] Bai, Z.-Z., Golub, G. H., Ng, M. K.: On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations.Numer. Linear Algebra Appl. 14 (2007), 319-335. Zbl 1199.65097, MR 2310394, 10.1002/nla.517 |
Reference:
|
[5] Bai, Z.-Z., Golub, G. H., Pan, J.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems.Numer. Math. 98 (2004), 1-32. Zbl 1056.65025, MR 2076052, 10.1007/s00211-004-0521-1 |
Reference:
|
[6] Beik, F. P. A., Shams, N. N.: Preconditioned generalized mixed-type splitting iterative method for solving weighted least-squares problems.Int. J. Comput. Math. 91 (2014), 944-963. Zbl 1304.65134, MR 3230032, 10.1080/00207160.2013.810215 |
Reference:
|
[7] Benzi, M.: A generalization of the Hermitian and skew-Hermitian splitting iteration.SIAM. J. Matrix Anal. Appl. 31 (2009), 360-374. Zbl 1191.65025, MR 2530254, 10.1137/080723181 |
Reference:
|
[8] Benzi, M., Golub, G. H.: A preconditioner for generalized saddle point problems.SIAM J. Matrix Anal. Appl. 26 (2004), 20-41. Zbl 1082.65034, MR 2112850, 10.1137/S0895479802417106 |
Reference:
|
[9] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences.Computer Science and Applied Mathematics. Academic Press, New York (1979). Zbl 0484.15016, MR 0544666, 10.1016/c2013-0-10361-3 |
Reference:
|
[10] Demmel, J. W.: Applied Numerical Linear Algebra.SIAM, Philadelphia (1997). Zbl 0879.65017, MR 1463942, 10.1137/1.9781611971446 |
Reference:
|
[11] Golub, G. H., Vanderstraeten, D.: On the preconditioning of matrices with skew-symmetric splittings.Numer. Algorithms 25 (2000), 223-239. Zbl 0983.65041, MR 1827156, 10.1023/A:1016637813615 |
Reference:
|
[12] Guo, P., Wu, S.-L., Li, C.-X.: On the SOR-like iteration method for solving absolute value equations.Appl. Math. Lett. 97 (2019), 107-113. Zbl 1437.65044, MR 3957497, 10.1016/j.aml.2019.03.033 |
Reference:
|
[13] Hadjidimos, A.: Accelerated overrelaxation method.Math. Comput. 32 (1978), 149-157. Zbl 0382.65015, MR 0483340, 10.1090/S0025-5718-1978-0483340-6 |
Reference:
|
[14] Ke, Y.: The new iteration algorithm for absolute value equation.Appl. Math. Lett. 99 (2020), Article ID 105990, 7 pages. Zbl 07112056, MR 3989672, 10.1016/j.aml.2019.07.021 |
Reference:
|
[15] Li, L., Huang, T.-Z., Liu, X.-P.: Modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems.Numer. Linear Algebra Appl. 14 (2007), 217-235. Zbl 1199.65109, MR 2301913, 10.1002/nla.528 |
Reference:
|
[16] Meng, G.-Y.: A practical asymptotical optimal SOR method.Appl. Math. Comput. 242 (2014), 707-715. Zbl 1336.65044, MR 3239699, 10.1016/j.amc.2014.06.034 |
Reference:
|
[17] Ren, L., Ren, F., Wen, R.: A selected method for the optimal parameters of the AOR iteration.J. Inequal. Appl. 2016 (2016), Article ID 279, 14 pages. Zbl 1353.65025, MR 3571336, 10.1186/s13660-016-1196-8 |
Reference:
|
[18] Saad, Y.: Iterative Methods for Sparse Linear Systems.SIAM, Philadelphia (2003). Zbl 1031.65046, MR 1990645, 10.1137/1.9780898718003 |
Reference:
|
[19] Salkuyeh, D. K.: The Picard-HSS iteration method for absolute value equations.Optim. Lett. 8 (2014), 2191-2202. Zbl 1335.90102, MR 3279597, 10.1007/s11590-014-0727-9 |
Reference:
|
[20] Varga, R. S.: Matrix Iterative Analysis.Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1962). Zbl 0133.08602, MR 0158502, 10.1007/978-3-642-05156-2 |
Reference:
|
[21] Woźnicki, Z. I.: Basic comparison theorems for weak and weaker matrix splitting.Electron. J. Linear Algebra 8 (2001), 53-59. Zbl 0981.65041, MR 1836055, 10.13001/1081-3810.1060 |
Reference:
|
[22] Wu, S.-L., Liu, Y.-J.: A new version of the accelerated overrelaxation iterative method.J. Appl. Math. 2014 (2014), Article ID 725360, 6 pages. Zbl 1442.65050, MR 3256322, 10.1155/2014/725360 |
. |