Previous |  Up |  Next

Article

Keywords:
forcing; open map; closed map; quotient map
Summary:
Let $f\colon X\to Y$ be a continuous map such as an open map, a closed map or a quotient map. We study under what circumstances $f$ remains an open, closed or quotient map in forcing extensions.
References:
[1] Arens R.: Note on convergence in topology. Math. Mag. 23 (1950), 229–234. DOI 10.2307/3028991 | MR 0037500
[2] Engelking R.: General Topology. Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[3] Grunberg R., Junqueira L. R., Tall F. D.: Forcing and normality. Proc. of the International Conf. on Set-theoretic Topology and Its Applications, Part 2, Matsuyama, 1994, Topology Appl. 84 (1998), no. 1–3, 145–174. DOI 10.1016/S0166-8641(97)00089-8 | MR 1611214
[4] Iwasa A.: Preservation of countable compactness and pseudocompactness by forcing. Topology Proc. 50 (2017), 1–11. MR 3488498
[5] Iwasa A.: Preservation of a neighborhood base of a set by ccc forcings. Topology Proc. 52 (2018), 61–72. MR 3673209
[6] Jech T.: Set Theory. The Third Millennium Edition, Revised and Expanded, Springer Monographs in Mathematics, Springer, Berlin, 2003. MR 1940513 | Zbl 1007.03002
[7] Juhász I., Weiss W.: Omitting the cardinality of the continuum in scattered spaces. Topology Appl. 31 (1989), no. 1, 19–27. DOI 10.1016/0166-8641(89)90095-3 | MR 0984101
[8] Kunen K.: Set Theory: An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing, Amsterdam, 1980. MR 0597342 | Zbl 0534.03026
Partner of
EuDML logo