Title:
|
Preservation of properties of a map by forcing (English) |
Author:
|
Iwasa, Akira |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
63 |
Issue:
|
1 |
Year:
|
2022 |
Pages:
|
121-129 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $f\colon X\to Y$ be a continuous map such as an open map, a closed map or a quotient map. We study under what circumstances $f$ remains an open, closed or quotient map in forcing extensions. (English) |
Keyword:
|
forcing |
Keyword:
|
open map |
Keyword:
|
closed map |
Keyword:
|
quotient map |
MSC:
|
54A35 |
MSC:
|
54C10 |
idZBL:
|
Zbl 07584115 |
idMR:
|
MR4445739 |
DOI:
|
10.14712/1213-7243.2021.029 |
. |
Date available:
|
2022-07-18T11:53:01Z |
Last updated:
|
2024-04-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150428 |
. |
Reference:
|
[1] Arens R.: Note on convergence in topology.Math. Mag. 23 (1950), 229–234. MR 0037500, 10.2307/3028991 |
Reference:
|
[2] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[3] Grunberg R., Junqueira L. R., Tall F. D.: Forcing and normality.Proc. of the International Conf. on Set-theoretic Topology and Its Applications, Part 2, Matsuyama, 1994, Topology Appl. 84 (1998), no. 1–3, 145–174. MR 1611214, 10.1016/S0166-8641(97)00089-8 |
Reference:
|
[4] Iwasa A.: Preservation of countable compactness and pseudocompactness by forcing.Topology Proc. 50 (2017), 1–11. MR 3488498 |
Reference:
|
[5] Iwasa A.: Preservation of a neighborhood base of a set by ccc forcings.Topology Proc. 52 (2018), 61–72. MR 3673209 |
Reference:
|
[6] Jech T.: Set Theory.The Third Millennium Edition, Revised and Expanded, Springer Monographs in Mathematics, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513 |
Reference:
|
[7] Juhász I., Weiss W.: Omitting the cardinality of the continuum in scattered spaces.Topology Appl. 31 (1989), no. 1, 19–27. MR 0984101, 10.1016/0166-8641(89)90095-3 |
Reference:
|
[8] Kunen K.: Set Theory: An Introduction to Independence Proofs.Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing, Amsterdam, 1980. Zbl 0534.03026, MR 0597342 |
. |