Previous |  Up |  Next

Article

Title: Preservation of properties of a map by forcing (English)
Author: Iwasa, Akira
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 63
Issue: 1
Year: 2022
Pages: 121-129
Summary lang: English
.
Category: math
.
Summary: Let $f\colon X\to Y$ be a continuous map such as an open map, a closed map or a quotient map. We study under what circumstances $f$ remains an open, closed or quotient map in forcing extensions. (English)
Keyword: forcing
Keyword: open map
Keyword: closed map
Keyword: quotient map
MSC: 54A35
MSC: 54C10
idZBL: Zbl 07584115
idMR: MR4445739
DOI: 10.14712/1213-7243.2021.029
.
Date available: 2022-07-18T11:53:01Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/150428
.
Reference: [1] Arens R.: Note on convergence in topology.Math. Mag. 23 (1950), 229–234. MR 0037500, 10.2307/3028991
Reference: [2] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [3] Grunberg R., Junqueira L. R., Tall F. D.: Forcing and normality.Proc. of the International Conf. on Set-theoretic Topology and Its Applications, Part 2, Matsuyama, 1994, Topology Appl. 84 (1998), no. 1–3, 145–174. MR 1611214, 10.1016/S0166-8641(97)00089-8
Reference: [4] Iwasa A.: Preservation of countable compactness and pseudocompactness by forcing.Topology Proc. 50 (2017), 1–11. MR 3488498
Reference: [5] Iwasa A.: Preservation of a neighborhood base of a set by ccc forcings.Topology Proc. 52 (2018), 61–72. MR 3673209
Reference: [6] Jech T.: Set Theory.The Third Millennium Edition, Revised and Expanded, Springer Monographs in Mathematics, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513
Reference: [7] Juhász I., Weiss W.: Omitting the cardinality of the continuum in scattered spaces.Topology Appl. 31 (1989), no. 1, 19–27. MR 0984101, 10.1016/0166-8641(89)90095-3
Reference: [8] Kunen K.: Set Theory: An Introduction to Independence Proofs.Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing, Amsterdam, 1980. Zbl 0534.03026, MR 0597342
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_63-2022-1_7.pdf 200.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo