Previous |  Up |  Next

Article

Title: On non-normality points, Tychonoff products and Suslin number (English)
Author: Logunov, Sergei
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 63
Issue: 1
Year: 2022
Pages: 131-134
Summary lang: English
.
Category: math
.
Summary: Let a space $X$ be Tychonoff product $\prod_{\alpha <\tau}X_{\alpha}$ of $\tau$-many Tychonoff nonsingle point spaces $X_{\alpha}$. Let Suslin number of $X$ be strictly less than the cofinality of $\tau$. Then we show that every point of remainder is a non-normality point of its Čech--Stone compactification $\beta X$. In particular, this is true if $X$ is either $R^{\tau}$ or $\omega ^{\tau}$ and a cardinal $\tau$ is infinite and not countably cofinal. (English)
Keyword: non-normality point
Keyword: Čech--Stone compactification
Keyword: Tychonoff product
Keyword: Suslin number
MSC: 54D15
MSC: 54D35
MSC: 54D40
MSC: 54D80
MSC: 54E35
MSC: 54G20
idZBL: Zbl 07584116
idMR: MR4445740
DOI: 10.14712/1213-7243.2022.004
.
Date available: 2022-07-18T11:53:52Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/150430
.
Reference: [1] Blaszczyk A., Szymański A.: Some non-normal subspaces of the Čech–Stone compactification of a discrete space.Abstracta, Eighth Winter School on Abstract Analysis, Czechoslovak Academy of Sciences, Praha, 1980, pages 35–38.
Reference: [2] Bešlagić A., van Douwen E. K.: Spaces of nonuniform ultrafilters in space of uniform ultrafilters.Topology Appl. 35 (1990), no. 2–3, 253–260. MR 1058805, 10.1016/0166-8641(90)90110-N
Reference: [3] Fine N. J., Gillman L.: Extensions of continuous functions in $\beta N$.Bull. Amer. Math. Soc. 66 (1960), 376–381. MR 0123291, 10.1090/S0002-9904-1960-10460-0
Reference: [4] Logunov S.: On non-normality points and metrizable crowded spaces.Comment. Math. Univ. Carolin. 48 (2007), no. 3, 523–527. MR 2374131
Reference: [5] Logunov S.: Non-normality points and big products of metrizable spaces.Topology Proc. 46 (2015), 73–85. MR 3218260
Reference: [6] Terasawa J.: $\beta X-\{p\}$ are non-normal for non-discrete spaces $X$.Topology Proc. 31 (2007), no. 1, 309–317. MR 2363172
Reference: [7] Warren N. M.: Properties of Stone–Čech compactifications of discrete spaces.Proc. Amer. Math. Soc. 33 (1972), 599–606. MR 0292035
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_63-2022-1_8.pdf 159.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo