[1] Dragone, D., Lambertini, L., Leitmann, G., Palestini, A.: 
Hamiltonian potential functions for differential games. Automatica 62 (2015), 134-138. 
DOI  | 
MR 3423980[2] Fleming, W. H., Rishel, R. W.: 
Deterministic and stochastic optimal control. Springer Science and Business Media 1 (2012). 
MR 0454768[3] Fonseca-Morales, A., Hernández-Lerma, O.: 
Potential differential games. Dyn. Games Appl. 8 (2018), 254-279. 
DOI  | 
MR 3784963[4] Fonseca-Morales, A., Hernández-Lerma, O.: 
Stochastic differential games: the potential approach. Stochastics 92, (2020), 1125-1138. 
DOI  | 
MR 4156004[5] González-Sánchez, D., Hernández-Lerma, O.: 
Discrete-time Stochastic Control and Dynamic Potential Games: The Euler-equation Approach. Springer, New York 2013. 
MR 3114623[6] Gopalakrishnan, R., Marden, J.Ŕ., Wierman, A.: 
Potential games are necessary to ensure pure Nash equilibria in cost sharing games. Math. Oper. Res. 39 (2014), 1252-1296. 
DOI  | 
MR 3279766[7] Hernández-Lerma, O., Lasserre, J. B.: 
Discrete-time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, New York 1996. 
MR 1363487[8] Hernández-Lerma, O., Lasserre, J. B.: 
Further Topics on Discrete-Time Markov Control Processes. Springer-Verlag, New York 1999. 
MR 1697198 | 
Zbl 0928.93002[9] Luque-Vázquez, F., Minjárez-Sosa, J. A.: 
Empirical approximation in Markov games under unbounded payoff: discounted and average criteria. Kybernetika 53 (2017), 4, 694-716. 
DOI  | 
MR 3730259[10] Mazalov, V. V., Rettieva, A. N., Avrachenkov, K. E.: 
Linear-quadratic discrete-time dynamic potential games. Autom. Remote Control 78 (2017), 1537-1544. 
DOI  | 
MR 3702566[11] Mguni, D.: Stochastic potential games. 
[12] Minjárez-Sosa, J. A.: 
Zero-Sum Discrete-Time Markov Games with Unknown Disturbance Distribution: Discounted and Average Criteria. Springer Nature, Cham 2020. 
DOI  | 
MR 4292281[13] Monderer, D., Shapley, L. S.: 
Potential games. Game Econ. Behav. 14 (1996), 124-143. 
DOI  | 
MR 1393599[14] Potters, J. A. M., Raghavan, T. E. S., Tijs, S. H.: 
Pure equilibrium strategies for stochastic games via potential functions. Adv. Dyn. Games Appl. Birkhauser, Boston 2009, pp. 433-444. 
DOI  | 
MR 2521681[15] Robles-Aguilar, A. D., González-Sánchez, D., Minjárez-Sosa, J. A.: 
Estimation of equilibria in an advertising game with unknown distribution of the response to advertising efforts. In: Modern Trends in Controlled Stochastic Processes, Theory and Applications, V.III, (A. Piunovskiy and Y. Zhang Eds.), Springer Nature, Cham 2021. pp. 148-165. 
DOI  | 
MR 4437149[16] Rosenthal, R. W.: 
A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2 (1973), 65-67. 
DOI  | 
MR 0319584[17] Slade, E. M.: 
What does an oligopoly maximize?. J. Ind. Econ. 42 (1994), 45-61. 
DOI [18] Macua, S. V., Zazo, S., Zazo, J.: Learning parametric closed-Loop policies for Markov potential games. 
[19] Zazo, S., Zazo, J., Sánchez-Fernández, M.: A control theoretic approach to solve a constrained uplink power dynamic game. In: IEEE, 22nd European Signal Processing Conference on (EUSIPCO) 2014, pp. 401-405.
[20] Zazo, S., Valcarcel, S., Sánchez-Fernández, M., Zazo, J.: 
Dynamic potential games with constraints: fundamentals and applications in communications. IEEE Trans. Signal Proc. 64 (2016), 3806-3821. 
DOI  | 
MR 3515718