Title:
|
Deterministic Markov Nash equilibria for potential discrete-time stochastic games (English) |
Author:
|
Fonseca-Morales, Alejandra |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
58 |
Issue:
|
2 |
Year:
|
2022 |
Pages:
|
163-179 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we study the problem of finding deterministic (also known as feedback or closed-loop) Markov Nash equilibria for a class of discrete-time stochastic games. In order to establish our results, we develop a potential game approach based on the dynamic programming technique. The identified potential stochastic games have Borel state and action spaces and possibly unbounded nondifferentiable cost-per-stage functions. In particular, the team (or coordination) stochastic games and the stochastic games with an action independent transition law are covered. (English) |
Keyword:
|
stochastic games |
Keyword:
|
optimal control |
Keyword:
|
potential approach |
Keyword:
|
dynamic programming |
MSC:
|
91A10 |
MSC:
|
91A14 |
MSC:
|
91A25 |
MSC:
|
91A50 |
MSC:
|
93E20 |
idZBL:
|
Zbl 07584151 |
idMR:
|
MR4467491 |
DOI:
|
10.14736/kyb-2022-2-0163 |
. |
Date available:
|
2022-07-29T12:06:50Z |
Last updated:
|
2023-03-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150462 |
. |
Reference:
|
[1] Dragone, D., Lambertini, L., Leitmann, G., Palestini, A.: Hamiltonian potential functions for differential games..Automatica 62 (2015), 134-138. MR 3423980, |
Reference:
|
[2] Fleming, W. H., Rishel, R. W.: Deterministic and stochastic optimal control..Springer Science and Business Media 1 (2012). MR 0454768 |
Reference:
|
[3] Fonseca-Morales, A., Hernández-Lerma, O.: Potential differential games..Dyn. Games Appl. 8 (2018), 254-279. MR 3784963, |
Reference:
|
[4] Fonseca-Morales, A., Hernández-Lerma, O.: Stochastic differential games: the potential approach..Stochastics 92, (2020), 1125-1138. MR 4156004, |
Reference:
|
[5] González-Sánchez, D., Hernández-Lerma, O.: Discrete-time Stochastic Control and Dynamic Potential Games: The Euler-equation Approach..Springer, New York 2013. MR 3114623 |
Reference:
|
[6] Gopalakrishnan, R., Marden, J.Ŕ., Wierman, A.: Potential games are necessary to ensure pure Nash equilibria in cost sharing games..Math. Oper. Res. 39 (2014), 1252-1296. MR 3279766, |
Reference:
|
[7] Hernández-Lerma, O., Lasserre, J. B.: Discrete-time Markov Control Processes: Basic Optimality Criteria..Springer-Verlag, New York 1996. MR 1363487 |
Reference:
|
[8] Hernández-Lerma, O., Lasserre, J. B.: Further Topics on Discrete-Time Markov Control Processes..Springer-Verlag, New York 1999. Zbl 0928.93002, MR 1697198 |
Reference:
|
[9] Luque-Vázquez, F., Minjárez-Sosa, J. A.: Empirical approximation in Markov games under unbounded payoff: discounted and average criteria..Kybernetika 53 (2017), 4, 694-716. MR 3730259, |
Reference:
|
[10] Mazalov, V. V., Rettieva, A. N., Avrachenkov, K. E.: Linear-quadratic discrete-time dynamic potential games..Autom. Remote Control 78 (2017), 1537-1544. MR 3702566, |
Reference:
|
[11] Mguni, D.: Stochastic potential games.. |
Reference:
|
[12] Minjárez-Sosa, J. A.: Zero-Sum Discrete-Time Markov Games with Unknown Disturbance Distribution: Discounted and Average Criteria..Springer Nature, Cham 2020. MR 4292281, |
Reference:
|
[13] Monderer, D., Shapley, L. S.: Potential games..Game Econ. Behav. 14 (1996), 124-143. MR 1393599, |
Reference:
|
[14] Potters, J. A. M., Raghavan, T. E. S., Tijs, S. H.: Pure equilibrium strategies for stochastic games via potential functions..Adv. Dyn. Games Appl. Birkhauser, Boston 2009, pp. 433-444. MR 2521681, |
Reference:
|
[15] Robles-Aguilar, A. D., González-Sánchez, D., Minjárez-Sosa, J. A.: Estimation of equilibria in an advertising game with unknown distribution of the response to advertising efforts..In: Modern Trends in Controlled Stochastic Processes, Theory and Applications, V.III, (A. Piunovskiy and Y. Zhang Eds.), Springer Nature, Cham 2021. pp. 148-165. MR 4437149, |
Reference:
|
[16] Rosenthal, R. W.: A class of games possessing pure-strategy Nash equilibria..Int. J. Game Theory 2 (1973), 65-67. MR 0319584, |
Reference:
|
[17] Slade, E. M.: What does an oligopoly maximize?.J. Ind. Econ. 42 (1994), 45-61. |
Reference:
|
[18] Macua, S. V., Zazo, S., Zazo, J.: Learning parametric closed-Loop policies for Markov potential games.. |
Reference:
|
[19] Zazo, S., Zazo, J., Sánchez-Fernández, M.: A control theoretic approach to solve a constrained uplink power dynamic game..In: IEEE, 22nd European Signal Processing Conference on (EUSIPCO) 2014, pp. 401-405. |
Reference:
|
[20] Zazo, S., Valcarcel, S., Sánchez-Fernández, M., Zazo, J.: Dynamic potential games with constraints: fundamentals and applications in communications..IEEE Trans. Signal Proc. 64 (2016), 3806-3821. MR 3515718, |
. |