Previous |  Up |  Next

Article

Title: Deterministic Markov Nash equilibria for potential discrete-time stochastic games (English)
Author: Fonseca-Morales, Alejandra
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 58
Issue: 2
Year: 2022
Pages: 163-179
Summary lang: English
.
Category: math
.
Summary: In this paper, we study the problem of finding deterministic (also known as feedback or closed-loop) Markov Nash equilibria for a class of discrete-time stochastic games. In order to establish our results, we develop a potential game approach based on the dynamic programming technique. The identified potential stochastic games have Borel state and action spaces and possibly unbounded nondifferentiable cost-per-stage functions. In particular, the team (or coordination) stochastic games and the stochastic games with an action independent transition law are covered. (English)
Keyword: stochastic games
Keyword: optimal control
Keyword: potential approach
Keyword: dynamic programming
MSC: 91A10
MSC: 91A14
MSC: 91A25
MSC: 91A50
MSC: 93E20
idZBL: Zbl 07584151
idMR: MR4467491
DOI: 10.14736/kyb-2022-2-0163
.
Date available: 2022-07-29T12:06:50Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/150462
.
Reference: [1] Dragone, D., Lambertini, L., Leitmann, G., Palestini, A.: Hamiltonian potential functions for differential games..Automatica 62 (2015), 134-138. MR 3423980,
Reference: [2] Fleming, W. H., Rishel, R. W.: Deterministic and stochastic optimal control..Springer Science and Business Media 1 (2012). MR 0454768
Reference: [3] Fonseca-Morales, A., Hernández-Lerma, O.: Potential differential games..Dyn. Games Appl. 8 (2018), 254-279. MR 3784963,
Reference: [4] Fonseca-Morales, A., Hernández-Lerma, O.: Stochastic differential games: the potential approach..Stochastics 92, (2020), 1125-1138. MR 4156004,
Reference: [5] González-Sánchez, D., Hernández-Lerma, O.: Discrete-time Stochastic Control and Dynamic Potential Games: The Euler-equation Approach..Springer, New York 2013. MR 3114623
Reference: [6] Gopalakrishnan, R., Marden, J.Ŕ., Wierman, A.: Potential games are necessary to ensure pure Nash equilibria in cost sharing games..Math. Oper. Res. 39 (2014), 1252-1296. MR 3279766,
Reference: [7] Hernández-Lerma, O., Lasserre, J. B.: Discrete-time Markov Control Processes: Basic Optimality Criteria..Springer-Verlag, New York 1996. MR 1363487
Reference: [8] Hernández-Lerma, O., Lasserre, J. B.: Further Topics on Discrete-Time Markov Control Processes..Springer-Verlag, New York 1999. Zbl 0928.93002, MR 1697198
Reference: [9] Luque-Vázquez, F., Minjárez-Sosa, J. A.: Empirical approximation in Markov games under unbounded payoff: discounted and average criteria..Kybernetika 53 (2017), 4, 694-716. MR 3730259,
Reference: [10] Mazalov, V. V., Rettieva, A. N., Avrachenkov, K. E.: Linear-quadratic discrete-time dynamic potential games..Autom. Remote Control 78 (2017), 1537-1544. MR 3702566,
Reference: [11] Mguni, D.: Stochastic potential games..
Reference: [12] Minjárez-Sosa, J. A.: Zero-Sum Discrete-Time Markov Games with Unknown Disturbance Distribution: Discounted and Average Criteria..Springer Nature, Cham 2020. MR 4292281,
Reference: [13] Monderer, D., Shapley, L. S.: Potential games..Game Econ. Behav. 14 (1996), 124-143. MR 1393599,
Reference: [14] Potters, J. A. M., Raghavan, T. E. S., Tijs, S. H.: Pure equilibrium strategies for stochastic games via potential functions..Adv. Dyn. Games Appl. Birkhauser, Boston 2009, pp. 433-444. MR 2521681,
Reference: [15] Robles-Aguilar, A. D., González-Sánchez, D., Minjárez-Sosa, J. A.: Estimation of equilibria in an advertising game with unknown distribution of the response to advertising efforts..In: Modern Trends in Controlled Stochastic Processes, Theory and Applications, V.III, (A. Piunovskiy and Y. Zhang Eds.), Springer Nature, Cham 2021. pp. 148-165. MR 4437149,
Reference: [16] Rosenthal, R. W.: A class of games possessing pure-strategy Nash equilibria..Int. J. Game Theory 2 (1973), 65-67. MR 0319584,
Reference: [17] Slade, E. M.: What does an oligopoly maximize?.J. Ind. Econ. 42 (1994), 45-61.
Reference: [18] Macua, S. V., Zazo, S., Zazo, J.: Learning parametric closed-Loop policies for Markov potential games..
Reference: [19] Zazo, S., Zazo, J., Sánchez-Fernández, M.: A control theoretic approach to solve a constrained uplink power dynamic game..In: IEEE, 22nd European Signal Processing Conference on (EUSIPCO) 2014, pp. 401-405.
Reference: [20] Zazo, S., Valcarcel, S., Sánchez-Fernández, M., Zazo, J.: Dynamic potential games with constraints: fundamentals and applications in communications..IEEE Trans. Signal Proc. 64 (2016), 3806-3821. MR 3515718,
.

Files

Files Size Format View
Kybernetika_58-2022-2_2.pdf 440.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo