Previous |  Up |  Next

Article

Keywords:
computational mechanics; contact problem; finite element method; explicit time integration algorithm
Summary:
Computational modelling of contact problems is still one of the most difficult aspects of non-linear analysis in engineering mechanics. The article introduces an original efficient explicit algorithm for evaluation of impacts of bodies, satisfying the conservation of both momentum and energy exactly. The algorithm is described in its linearized 2-dimensional formulation in details, as open to numerous generalizations including 3-dimensional ones, and supplied by numerical examples obtained from its software implementation.
References:
[1] Abe, K., Higashimori, N., Kubo, M., Fujiwara, H., Iso, Y.: A remark on the Courant-Friedrichs-Lewy condition in finite difference approach to PDE's. Adv. Appl. Math. Mech. 6 (2014), 693-698. DOI 10.4208/aamm.2014.5.s6 | MR 3244370
[2] Ahmad, M., Ismail, K. A., Mat, F.: Impact models and coefficient of restitution: A review. ARPN J. Eng. Appl. Sci. 11 (2016), 6549-6555.
[3] Bank, R. E., Dupont, T.: An optimal order process for solving finite element equations. Math. Comput. 36 (1981), 35-51. DOI 10.1090/S0025-5718-1981-0595040-2 | MR 595040 | Zbl 0466.65059
[4] Bathe, K.-J.: Finite Element Procedures. Prentice Hall, New Jersey (2009).
[5] Castro, A. Bermúdez de: Continuum Thermomechanics. Progress in Mathematical Physics 43. Birkhäuser, Basel (2005). DOI 10.1007/3-7643-7383-0 | MR 2145925 | Zbl 1070.74001
[6] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15. Springer, New York (2002). DOI 10.1007/978-1-4757-3658-8 | MR 1894376 | Zbl 1012.65115
[7] Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100 (1928), 32-74 German \99999JFM99999 54.0486.01. DOI 10.1007/BF01448839 | MR 1512478
[8] Duriez, C., Andriot, C., Kheddar, A.: Signorini's contact model for deformable objects in haptic simulations. International Conference on Intelligent Robots and Systems (IROS) IEEE, Piscataway (2004), 3232-3237. DOI 10.1109/IROS.2004.1389915
[9] Duvaut, G., Lions, J. L.: Inequalities in Mechanics and Physics. Grundlehren der mathematischen Wissenschaften 219. Springer, Berlin (1976). DOI 10.1007/978-3-642-66165-5 | MR 0521262 | Zbl 0331.35002
[10] Eck, C., Jarušek, J., Sofonea, M.: A dynamic elastic-visco-plastic unilateral contact problems with normal damped response and Coulomb friction. Eur. J. Appl. Math. 21 (2010), 229-251. DOI 10.1017/S0956792510000045 | MR 2646670 | Zbl 1330.74131
[11] Francavilla, A., Zienkiewicz, O. C.: A note on numerical computation of elastic contact problems. Int. J. Numer. Methods Eng. 9 (1975), 913-924. DOI 10.1002/nme.1620090410 | MR 3618552
[12] (ed.), J. O. Halquist: LS-DYNA Theoretical Manual. Livermore Software Technology Corporation, Livermore (2006).
[13] Halquist, J. O., Goudreau, G., Benson, D. J.: Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput. Methods Appl. Mech. Eng. 51 (1985), 107-137. DOI 10.1016/0045-7825(85)90030-1 | MR 0822741 | Zbl 0567.73120
[14] Han, J., Zeng, H.: Variational analysis and optimal control of dynamic unilateral contact models with friction. J. Math. Anal. Appl. 473 (2019), 712-748. DOI 10.1016/j.jmaa.2018.12.068 | MR 3912849 | Zbl 1433.49012
[15] Hashiguchi, K.: Elastoplasticity Theory. Lecture Notes in Applied and Computational Mechanics 69. Springer, Berlin (2014). DOI 10.1007/978-3-642-35849-4 | MR 3235845 | Zbl 1318.74001
[16] Hughes, T. J. R., Taylor, R. L., Kanoknukulchai, W.: A finite element method for large displacement contact and impact problems. Formulations and Computational Algorithms in Finite Element Analysis M.I.T. Press, Cambridge (1977), 468-495. MR 0475196
[17] Kloosterman, G., Damme, R. M. J. van, Boogaard, A. H. van der, Huétink, J.: A geometrical-based contact algorithm using a barrier method. Int. J. Numer. Methods Eng. 51 (2001), 865-882. DOI 10.1002/nme.209 | MR 1837060 | Zbl 1039.74046
[18] Kocur, G. K., Harmanci, Y. E., Chatzi, E., Steeb, H., Markert, B.: Automated identification of the coefficient of restitution via bouncing ball measurement. Arch. Appl. Mech. 91 (2021), 47-60. DOI 10.1007/s00419-020-01751-x
[19] Laursen, T. A.: Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis. Springer, Berlin (2002). DOI 10.1007/978-3-662-04864-1 | MR 1902698 | Zbl 0996.74003
[20] Li, J., Yu, K., Li, X.: A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis. Nonlinear Dyn. 96 (2019), 2475-2507. DOI 10.1007/s11071-019-04936-4
[21] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969), French. MR 0259693 | Zbl 0189.40603
[22] Liu, Y. F., Li, J., Zhang, Z. M., Hu, X. H., Zhang, W. J.: Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system. Mech. Sci. 6 (2015), 15-28. DOI 10.5194/ms-6-15-2015
[23] Na, J., Chen, Q., Ren, X.: Adaptive Identification and Control of Uncertain Systems with Non-Smooth Dynamics. Emerging Methodologies and Applications in Modelling, Identification and Control. Academic Press, Amsterdam (2018). DOI 10.1016/C2016-0-04487-X | Zbl 1415.93006
[24] Němec, I., Štekbauer, H., Vaněčková, A., Vlk, Z.: Explicit and implicit method in nonlinear seismic analysis. Dynamics of Civil Engineering and Transport Structures and Wind Engineering -- DYN-WIND'2017 MATEC Web of Conferences 107. EDP Sciences, Paris (2017), Article ID 66, 8 pages. DOI 10.1051/matecconf/201710700066
[25] Puso, M. A.: A 3D mortar method for solid mechanics. Int. J. Numer. Methods Eng. 59 (2004), 315-336. DOI 10.1002/nme.865 | Zbl 1047.74065
[26] Rek, V., Vala, J.: On a distributed computing platform for a class of contact-impact problems. Seminar on Numerical Analysis (SNA'21) Institute of Geonics CAS, Ostrava (2021), 64-67.
[27] Rektorys, K.: The Method of Discretization in Time and Partial Differential Equations. Mathematics and Its Applications (East European Series) 4. D. Reidel, Dordrecht (1982). MR 0689712 | Zbl 0505.65029
[28] Roubíček, T.: Nonlinear Partial Differential Equations with Applications. ISNM. International Series of Numerical Mathematics 153. Birkhäuser, Basel (2005). DOI 10.1007/978-3-0348-0513-1 | MR 2176645 | Zbl 1087.35002
[29] Sanz-Serna, J. M., Spijker, M. N.: Regions of stability, equivalence theorems and the Courant-Friedrichs-Lewy condition. Numer. Math. 49 (1986), 319-329. DOI 10.1007/BF01389633 | MR 0848530 | Zbl 0574.65106
[30] Schwab, A. L.: On the interpretation of the Lagrange multipliers in the constraint formulation of contact problems; or why are some multipliers always zero?. Proc. ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE ASME, New York (2014), 1-5.
[31] Sewerin, F., Papadopoulos, P.: On the finite element solution of frictionless contact problems using an exact penalty approach. Comput. Methods Appl. Mech. Eng. 368 (2020), Article ID 113108, 24 pages. DOI 10.1016/j.cma.2020.113108 | MR 4114140 | Zbl 07337970
[32] Shi, P.: The restitution coefficient for a linear elastic rod. Math. Comput. Modelling 28 (1998), 427-435. DOI 10.1016/S0895-7177(98)00132-0 | MR 1648769 | Zbl 1122.74429
[33] Sofonea, M., Danan, D., Zheng, C.: Primal and dual variational formulation of frictional contact problem. Mediterr. J. Math. 13 (2016), 857-872. DOI 10.1007/s00009-014-0504-0 | MR 3483867 | Zbl 1335.74048
[34] Štekbauer, H.: The pulley element. Trans. VŠB-TU Ostrava 16 (2016), 161-164. DOI 10.1515/tvsb-2016-0027
[35] Štekbauer, H., Lang, R., Zeiner, M., Burkart, D.: A correct and efficient algorithm for impacts of bodies. Seminar on Numerical Analysis (SNA'21) Institute of Geonics CAS, Ostrava (2021), 55-58.
[36] Štekbauer, H., Němec, I.: Modeling of welded connections using Lagrange multipliers. AIP Conf. Proc. 2293 (2020), Article ID 340013, 4 pages. DOI 10.1063/5.0031396
[37] Štekbauer, H., Vlk, Z.: The modification of a node-to-node algorithm for the modelling of beam connections in RFEM and SCIA using the explicit method. Dynamics of Civil Engineering and Transport Structures and Wind Engineering -- DYN-WIND'2017 MATEC Web of Conferences 107. EDP Sciences, Paris (2017), Article ID 60, 6 pages. DOI 10.1051/matecconf/201710700060
[38] Vala, J., Kozák, V.: Computational analysis of quasi-brittle fracture in fibre reinforced cementitious composites. Theor. Appl. Fracture Mech. 107 (2020), Article ID 102486, 8 pages. DOI 10.1016/j.tafmec.2020.102486
[39] Vala, J., Kozák, V.: Non-local damage modelling of quasi-brittle composites. Appl. Math., Praha 66 (2021), 815-836. DOI 10.21136/AM.2021.0281-20 | MR 4342610 | Zbl 07442408
[40] Weyler, R., Oliver, J., Sain, T., Cante, J. C.: On the contact domain method: A comparison of penalty and Lagrange multiplier implementations. Comput. Methods Appl. Mech. Eng. 205-208 (2012), 68-82. DOI 10.1016/j.cma.2011.01.011 | MR 2872027 | Zbl 1239.74075
[41] Wriggers, P.: Finite element algorithms for contact problems. Arch. Comput. Methods Eng. 2 (1995), 1-49. DOI 10.1007/BF02736195 | MR 1367147
[42] Wu, S. R.: A variational principle for dynamic contact with large deformation. Comput. Methods Appl. Mech. Eng. 198 (2009), 2009-2015. DOI 10.1016/j.cma.2008.12.013 | Zbl 1227.74041
[43] Wu, S. R.: Corrigendum to: "A variational principle for dynamic contact with large deformation". Comput. Methods Appl. Mech. Eng. 199 (2009), 220. DOI 10.1016/j.cma.2009.10.003 | MR 1344385 | Zbl 1231.74332
[44] Xu, D., Hjelmstad, K. D.: A new node-to-node approach to contact/impact problems for two dimensional elastic solids subject to finite deformation. Newmark Structural Laboratory Report Series University of Illinois, Urbana-Champaign (2008), Available at http://hdl.handle.net/2142/5318\kern0pt
[45] Yang, B., Laursen, T. A.: A large deformation mortar formulation of self contact with finite sliding. Comput. Methods Appl. Mech. Eng. 197 (2008), 756-772. DOI 10.1016/j.cma.2007.09.004 | MR 2397015 | Zbl 1169.74513
[46] Yang, B., Laursen, T. A., Meng, X.: Two dimensional mortar contact methods for large deformation frictional sliding. Int. J. Numer. Methods Eng. 62 (2005), 1183-1225. DOI 10.1002/nme.1222 | MR 2120292 | Zbl 1161.74497
[47] Yastrebov, V. A.: Numerical Methods in Contact Mechanics. J. Wiley & Sons, London (2013). DOI 10.1002/9781118647974 | Zbl 1268.74003
[48] Zavarise, G., Lorenzis, L. de: A modified node-to-segment algorithm passing the contact patch test. Int. J. Numer. Methods Eng. 79 (2009), 379-416. DOI 10.1002/nme.2559 | Zbl 1171.74455
[49] Zhong, Z.-H.: Finite Element Procedures for Contact-Impact Problems. Oxford University Press, Oxford (1993). MR 1206475
Partner of
EuDML logo