Title:
|
Three small results on normal first countable linearly H-closed spaces (English) |
Author:
|
Baillif, Mathieu |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
63 |
Issue:
|
2 |
Year:
|
2022 |
Pages:
|
221-228 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We use topological consequences of {\sf PFA}, {\sf MA$_{\omega_1}$(S)[S]} and {\sf PFA(S)[S]} proved by other authors to show that normal first countable linearly H-closed spaces with various additional properties are compact in these models. (English) |
Keyword:
|
linearly H-closed space |
Keyword:
|
normal space |
Keyword:
|
first countable space |
Keyword:
|
forcing axiom |
MSC:
|
54D20 |
idZBL:
|
Zbl 07613031 |
idMR:
|
MR4506133 |
DOI:
|
10.14712/1213-7243.2022.013 |
. |
Date available:
|
2022-11-02T09:18:31Z |
Last updated:
|
2024-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151086 |
. |
Reference:
|
[1] Abraham U., Todorčević S.: Martin's axiom and first-countable $S$- and $L$-spaces.Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pages 327–346. MR 0776627 |
Reference:
|
[2] Alas O. T., Junqueira L. R., Wilson R. G.: On linearly H-closed spaces.Topology Appl. 258 (2019), 161–171. MR 3924509, 10.1016/j.topol.2019.02.014 |
Reference:
|
[3] Baillif M.: Notes on linearly H-closed spaces and OD-selection principles.Topology Proc. 54 (2019), 109–124. MR 3892579 |
Reference:
|
[4] Balogh Z., Dow A., Fremlin D. H., Nyikos P. J.: Countable tightness and proper forcing.Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 1, 295–298. MR 0940491, 10.1090/S0273-0979-1988-15649-2 |
Reference:
|
[5] Balogh Z., Gruenhage G.: Two more perfectly normal non-metrizable manifolds.Topology Appl. 151 (2005), no. 1–3, 260–272. MR 2139756, 10.1016/j.topol.2003.12.021 |
Reference:
|
[6] Bella A.: Observations on some cardinality bounds.Topology Appl. 228 (2017), 355–362. MR 3679094, 10.1016/j.topol.2017.06.007 |
Reference:
|
[7] Dow A., Tall F. D.: PFA(S)[S] and countably compact spaces.available in ArXiv 1607.04368 [math.LO] (2016), 24 pages. MR 3702781 |
Reference:
|
[8] Eisworth T., Nyikos P., Shelah S.: Gently killing S-spaces.Israel J. Math. 136 (2003), 189–220. MR 1998110, 10.1007/BF02807198 |
Reference:
|
[9] Larson P. B., Tall F. D.: Locally compact perfectly normal spaces may all be paracompact.Fund. Math. 210 (2010), no. 3, 285–300. MR 2733053, 10.4064/fm210-3-4 |
Reference:
|
[10] Larson P., Tall F. D.: On the hereditary paracompactness of locally compact, hereditarily normal spaces.Canad. Math. Bull. 57 (2014), no. 3, 579–584. MR 3239121, 10.4153/CMB-2014-010-3 |
Reference:
|
[11] Nyikos P.: The theory of nonmetrizable manifolds.Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pages 633–684. MR 0776633 |
Reference:
|
[12] Nyikos P. J.: Applications of some strong set-theoretic axioms to locally compact $T_5$ and hereditarily scwH spaces.Fund. Math. 176 (2003), no. 1, 25–45. MR 1971471, 10.4064/fm176-1-3 |
Reference:
|
[13] Porter J. R., Woods R. G.: Feebly compact spaces, Martin's axiom and “diamond”.Proc. of the 1984 Topology Conf., Auburn, Ala., 1984, Topology Proc. 9 (1984), no. 1, 105–121. MR 0781555 |
Reference:
|
[14] Roitman J.: Basic $S$ and $L$.Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pages 295–326. Zbl 0594.54001, MR 0776626 |
Reference:
|
[15] Szentmiklóssy Z.: $S$-spaces and $L$-spaces under Martin's axiom.Topology, Vol. II, Proc. Fourth Colloq., Budapest, 1978, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam, 1980, pages 1139–1145. MR 0588860 |
Reference:
|
[16] Tall F. D.: PFA(S)[S] and the Arhangel'skiĭ–Tall problem.Topology Proc. 40 (2012), 99–108. MR 2817292 |
Reference:
|
[17] Tall F. D.: PFA(S)[S] for the masses.Topology Appl. 232 (2017), 13–21. MR 3720876, 10.1016/j.topol.2017.09.033 |
Reference:
|
[18] Todorčević S.: Partition Problems in Topology.Contemporary Mathematics, 84, American Mathematical Society, Providence, 1989. MR 0980949, 10.1090/conm/084 |
. |