Previous |  Up |  Next

Article

Keywords:
continued fraction; $p$-adic number; transcendence; subspace theorem
Summary:
We study a family of quasi periodic $p$-adic Ruban continued fractions in the $p$-adic field $\mathbb {Q}_p$ and we give a criterion of a quadratic or transcendental $p$-adic number which based on the $p$-adic version of the subspace theorem due to Schlickewei.
References:
[1] Adamczewski, B., Bugeaud, Y.: On the decimal expansion of algebraic numbers. Fiz. Mat. Fak. Moksl. Semin. Darb. 8 (2005), 5-13. MR 2191109 | Zbl 1138.11028
[2] Adamczewski, B., Bugeaud, Y.: On the complexity of algebraic numbers. I. Expansions in integer bases. Ann. Math. (2) 165 (2007), 547-565. DOI 10.4007/annals.2007.165.547 | MR 2299740 | Zbl 1195.11094
[3] Adamczewski, B., Bugeaud, Y.: On the Maillet-Baker continued fractions. J. Reine Angew. Math. 606 (2007), 105-121. DOI 10.1515/CRELLE.2007.036 | MR 2337643 | Zbl 1145.11054
[4] Baker, A.: Continued fractions of transcendental numbers. Mathematika, Lond. 9 (1962), 1-8. DOI 10.1112/S002557930000303X | MR 0144853 | Zbl 0105.03903
[5] Laohakosol, V.: A characterization of rational numbers by $p$-adic Ruban continued fractions. J. Aust. Math. Soc., Ser. A 39 (1985), 300-305. DOI 10.1017/S1446788700026070 | MR 0802720 | Zbl 0582.10021
[6] LeVeque, W. J.: Topics in Number Theory. II. Addison-Wesley, Reading (1956). MR 0080682 | Zbl 0070.03804
[7] Mahler, K.: Zur Approximation $p$-adischer Irrationalzahlen. Nieuw Arch. Wiskd. 18 (1934), 22-34 German. Zbl 0009.20003
[8] Maillet, E.: Introduction à la théorie des nombres transcendants et des propriétés arithmétiques des fonctions. Gauthier-Villars, Paris (1906), French \99999JFM99999 37.0237.02.
[9] Neukirch, J.: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften 322. Springer, Berlin (1999). DOI 10.1007/978-3-662-03983-0 | MR 1697859 | Zbl 0956.11021
[10] Ooto, T.: Transcendental $p$-adic continued fractions. Math. Z. 287 (2017), 1053-1064. DOI 10.1007/s00209-017-1859-2 | MR 3719527 | Zbl 1388.11040
[11] Ruban, A. A.: Some metric properties of $p$-adic numbers. Sib. Math. J. 11 (1970), 176-180. DOI 10.1007/BF00970247 | MR 0260700 | Zbl 0213.32701
[12] Schlickewei, H. P.: The $p$-adic Thue-Siegel-Roth-Schmidt theorem. Arch. Math. 29 (1977), 267-270. DOI 10.1007/BF01220404 | MR 0491529 | Zbl 0365.10026
[13] Schmidt, W. M.: Diophantine Approximation. Lecture Notes in Mathematics 785. Springer, Berlin (1980). DOI 10.1007/978-3-540-38645-2 | MR 0568710 | Zbl 0421.10019
[14] Wang, L.: $P$-adic continued fractions. I. Sci. Sin., Ser. A 28 (1985), 1009-1017. MR 0866457 | Zbl 0628.10036
Partner of
EuDML logo