Previous |  Up |  Next

Article

Title: Pseudo-Riemannian and Hessian geometry related to Monge-Ampère structures (English)
Author: Hronek, S.
Author: Suchánek, R.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 58
Issue: 5
Year: 2022
Pages: 329-338
Summary lang: English
.
Category: math
.
Summary: We study properties of pseudo-Riemannian metrics corresponding to Monge-Ampère structures on four dimensional $T^*M$. We describe a family of Ricci flat solutions, which are parametrized by six coefficients satisfying the Plücker embedding equation. We also focus on pullbacks of the pseudo-metrics on two dimensional $M$, and describe the corresponding Hessian structures. (English)
Keyword: Hessian structure
Keyword: Lychagin-Rubtsov metric
Keyword: Monge-Ampère structure
Keyword: Monge-Ampère equation
Keyword: Plücker embedding
MSC: 53B20
MSC: 83C15
idZBL: Zbl 07655751
idMR: MR4529822
DOI: 10.5817/AM2022-5-329
.
Date available: 2022-11-28T12:34:05Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151157
.
Reference: [1] Amari, S., Armstrong, J.: Curvature of Hessian manifolds.Differential Geom. Appl. 33 (2014), 1–12. MR 3183362, 10.1016/j.difgeo.2014.01.001
Reference: [2] Banos, B.: Integrable geometries and Monge-Ampèere equations.arXiv: Differential Geometry (2006).
Reference: [3] Banos, B.: Monge-Ampère equations and generalized complex geometry –the two-dimensional case.J. Geom. Phys. 57 (3) (2007), 841–853. MR 2275194, 10.1016/j.geomphys.2006.06.005
Reference: [4] Banos, B.: Complex solutions of Monge-Ampère equations.J. Geom. Phys. 61 (2011), no. 11, 2187–2198. MR 2827118, 10.1016/j.geomphys.2011.06.019
Reference: [5] Banos, B.: Complex solutions of Monge-Ampère equations.J. Geom. Phys. 61 (2011), no. 11, 2187–2198. MR 2827118, 10.1016/j.geomphys.2011.06.019
Reference: [6] Banos, B., Rubtsov, V., Roulstone, I.: Monge–Ampère structures and the geometry of incompressible flows.J. Phys A 49 (2016). MR 3512079, 10.1088/1751-8113/49/24/244003
Reference: [7] Delahaies, S.: Complex and contact geometry in geophysical fluid dynamics.Ph.D. thesis, 01 2009. MR 3697449
Reference: [8] Kosmann-Schwarzbach, Y., Rubtsov, V.: Compatible structures on Lie algebroids and Monge-Ampère operators.Acta Appl. Math. 109 (2010), no. 1, 101–135. MR 2579885, 10.1007/s10440-009-9444-2
Reference: [9] Kushner, A., Lychagin, V., Rubtsov, V.: Contact geometry and nonlinear differential equations.Encyclopedia Math. Appl., Cambridge University Press, 2006. MR 2352610
Reference: [10] Lychagin, V.V.: Contact geometry and non-llnear second-order differential equations.Russian Math. Surveys 34 (1979), no. 1, 149–180. MR 0525652, 10.1070/RM1979v034n01ABEH002873
Reference: [11] Lychagin, V.V., Roubtsov, V.: Monge–Ampère Grassmannians, characteristic classes and all that.pp. 233–257, Springer International Publishing, Cham, 2019. MR 3932304
Reference: [12] Lychagin, V.V., Rubtsov, V.N., Chekalov, I.V.: A classification of Monge-Ampère equations.Ann. Sci. Éc. Norm. Supér. (4) Ser. 4, 26 (1993), no. 3, 281–308 (en). MR 94c:58229 MR 1222276
Reference: [13] Roulstone, I., Banos, B., Gibbon, J.D., Roubtsov, V.N.: Kähler geometry and Burgers’ vortices.(2009).
Reference: [14] Rubtsov, V., Roulstone, I.: Holomorphic structures in hydrodynamical models of nearly geostrophic flow.R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 1519–1531. MR 1851013, 10.1098/rspa.2001.0779
Reference: [15] Rubtsov, V. N., Roulstone, I.: Examples of quaternionic and Kähler structures in Hamiltonian models of nearly geostrophic flow.J. Phys. A 30 (1997), no. 4, L63–L68. MR 1457975, 10.1088/0305-4470/30/4/004
Reference: [16] Rubtsov, Volodya: Geometry of Monge-Ampère structures.pp. 95–156, Springer International Publishing, Cham, 2019. MR 3932299
Reference: [17] Shima, Hirohiko: The geometry of Hessian structures.World Scientific, 2007. MR 2293045
Reference: [18] Totaro, B.: The curvature of a Hessian metric.Internat. J. Math. 15 (2004), no. 04, 369–391. MR 2069684, 10.1142/S0129167X04002338
.

Files

Files Size Format View
ArchMathRetro_058-2022-5_6.pdf 437.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo