Title:
|
Pseudo-Riemannian and Hessian geometry related to Monge-Ampère structures (English) |
Author:
|
Hronek, S. |
Author:
|
Suchánek, R. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
58 |
Issue:
|
5 |
Year:
|
2022 |
Pages:
|
329-338 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study properties of pseudo-Riemannian metrics corresponding to Monge-Ampère structures on four dimensional $T^*M$. We describe a family of Ricci flat solutions, which are parametrized by six coefficients satisfying the Plücker embedding equation. We also focus on pullbacks of the pseudo-metrics on two dimensional $M$, and describe the corresponding Hessian structures. (English) |
Keyword:
|
Hessian structure |
Keyword:
|
Lychagin-Rubtsov metric |
Keyword:
|
Monge-Ampère structure |
Keyword:
|
Monge-Ampère equation |
Keyword:
|
Plücker embedding |
MSC:
|
53B20 |
MSC:
|
83C15 |
idZBL:
|
Zbl 07655751 |
idMR:
|
MR4529822 |
DOI:
|
10.5817/AM2022-5-329 |
. |
Date available:
|
2022-11-28T12:34:05Z |
Last updated:
|
2023-03-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151157 |
. |
Reference:
|
[1] Amari, S., Armstrong, J.: Curvature of Hessian manifolds.Differential Geom. Appl. 33 (2014), 1–12. MR 3183362, 10.1016/j.difgeo.2014.01.001 |
Reference:
|
[2] Banos, B.: Integrable geometries and Monge-Ampèere equations.arXiv: Differential Geometry (2006). |
Reference:
|
[3] Banos, B.: Monge-Ampère equations and generalized complex geometry –the two-dimensional case.J. Geom. Phys. 57 (3) (2007), 841–853. MR 2275194, 10.1016/j.geomphys.2006.06.005 |
Reference:
|
[4] Banos, B.: Complex solutions of Monge-Ampère equations.J. Geom. Phys. 61 (2011), no. 11, 2187–2198. MR 2827118, 10.1016/j.geomphys.2011.06.019 |
Reference:
|
[5] Banos, B.: Complex solutions of Monge-Ampère equations.J. Geom. Phys. 61 (2011), no. 11, 2187–2198. MR 2827118, 10.1016/j.geomphys.2011.06.019 |
Reference:
|
[6] Banos, B., Rubtsov, V., Roulstone, I.: Monge–Ampère structures and the geometry of incompressible flows.J. Phys A 49 (2016). MR 3512079, 10.1088/1751-8113/49/24/244003 |
Reference:
|
[7] Delahaies, S.: Complex and contact geometry in geophysical fluid dynamics.Ph.D. thesis, 01 2009. MR 3697449 |
Reference:
|
[8] Kosmann-Schwarzbach, Y., Rubtsov, V.: Compatible structures on Lie algebroids and Monge-Ampère operators.Acta Appl. Math. 109 (2010), no. 1, 101–135. MR 2579885, 10.1007/s10440-009-9444-2 |
Reference:
|
[9] Kushner, A., Lychagin, V., Rubtsov, V.: Contact geometry and nonlinear differential equations.Encyclopedia Math. Appl., Cambridge University Press, 2006. MR 2352610 |
Reference:
|
[10] Lychagin, V.V.: Contact geometry and non-llnear second-order differential equations.Russian Math. Surveys 34 (1979), no. 1, 149–180. MR 0525652, 10.1070/RM1979v034n01ABEH002873 |
Reference:
|
[11] Lychagin, V.V., Roubtsov, V.: Monge–Ampère Grassmannians, characteristic classes and all that.pp. 233–257, Springer International Publishing, Cham, 2019. MR 3932304 |
Reference:
|
[12] Lychagin, V.V., Rubtsov, V.N., Chekalov, I.V.: A classification of Monge-Ampère equations.Ann. Sci. Éc. Norm. Supér. (4) Ser. 4, 26 (1993), no. 3, 281–308 (en). MR 94c:58229 MR 1222276 |
Reference:
|
[13] Roulstone, I., Banos, B., Gibbon, J.D., Roubtsov, V.N.: Kähler geometry and Burgers’ vortices.(2009). |
Reference:
|
[14] Rubtsov, V., Roulstone, I.: Holomorphic structures in hydrodynamical models of nearly geostrophic flow.R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 1519–1531. MR 1851013, 10.1098/rspa.2001.0779 |
Reference:
|
[15] Rubtsov, V. N., Roulstone, I.: Examples of quaternionic and Kähler structures in Hamiltonian models of nearly geostrophic flow.J. Phys. A 30 (1997), no. 4, L63–L68. MR 1457975, 10.1088/0305-4470/30/4/004 |
Reference:
|
[16] Rubtsov, Volodya: Geometry of Monge-Ampère structures.pp. 95–156, Springer International Publishing, Cham, 2019. MR 3932299 |
Reference:
|
[17] Shima, Hirohiko: The geometry of Hessian structures.World Scientific, 2007. MR 2293045 |
Reference:
|
[18] Totaro, B.: The curvature of a Hessian metric.Internat. J. Math. 15 (2004), no. 04, 369–391. MR 2069684, 10.1142/S0129167X04002338 |
. |