Previous |  Up |  Next

Article

Title: Riesz potentials and Sobolev-type inequalities in Orlicz-Morrey spaces of an integral form (English)
Author: Ohno, Takao
Author: Shimomura, Tetsu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 1
Year: 2023
Pages: 263-276
Summary lang: English
.
Category: math
.
Summary: Our aim is to give Sobolev-type inequalities for Riesz potentials of functions in Orlicz-Morrey spaces of an integral form over non-doubling metric measure spaces as an extension of T. Ohno, T. Shimomura (2022). Our results are new even for the doubling metric measure spaces. (English)
Keyword: Riesz potential
Keyword: Sobolev's inequality
Keyword: Orlicz-Morrey space
Keyword: metric measure space
Keyword: non-doubling measure
MSC: 46E30
MSC: 46E35
idZBL: Zbl 07655767
idMR: MR4541101
DOI: 10.21136/CMJ.2022.0149-22
.
Date available: 2023-02-03T11:14:53Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151516
.
Reference: [1] Adams, D. R.: A note on Riesz potentials.Duke Math. J. 42 (1975), 765-778. Zbl 0336.46038, MR 458158, 10.1215/S0012-7094-75-04265-9
Reference: [2] Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces.EMS Tracts in Mathematics 17. European Mathematical Society, Zürich (2011). Zbl 1231.31001, MR 2867756, 10.4171/099
Reference: [3] Burenkov, V. I., Guliyev, H. V.: Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces.Stud. Math. 163 (2004), 157-176. Zbl 1044.42015, MR 2047377, 10.4064/sm163-2-4
Reference: [4] Cruz-Uribe, D. V., Shukla, P.: The boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type.Stud. Math. 242 (2018), 109-139. Zbl 1397.42009, MR 3778907, 10.4064/sm8556-6-2017
Reference: [5] Hajłasz, P., Koskela, P.: Sobolev met Poincaré.Mem. Am. Math. Soc. 688 (2000), 101 pages. Zbl 0954.46022, MR 1683160, 10.1090/memo/0688
Reference: [6] Hashimoto, D., Sawano, Y., Shimomura, T.: Gagliardo-Nirenberg inequality for generalized Riesz potentials of functions in Musielak-Orlicz spaces over quasi-metric measure spaces.Colloq. Math. 161 (2020), 51-66. Zbl 1464.46043, MR 4085112, 10.4064/cm7535-4-2019
Reference: [7] Hedberg, L. I.: On certain convolution inequalities.Proc. Am. Math. Soc. 36 (1972), 505-510. Zbl 0283.26003, MR 0312232, 10.1090/S0002-9939-1972-0312232-4
Reference: [8] Heinonen, J.: Lectures on Analysis on Metric Spaces.Universitext. Springer, New York (2001). Zbl 0985.46008, MR 1800917, 10.1007/978-1-4613-0131-8
Reference: [9] Hurri-Syrjänen, R., Ohno, T., Shimomura, T.: On Trudinger-type inequalities in Orlicz-Morrey spaces of an integral form.Can. Math. Bull. 64 (2021), 75-90. Zbl 1472.46040, MR 4242993, 10.4153/S0008439520000223
Reference: [10] Kairema, A.: Two-weight norm inequalities for potential type and maximal operators in a metric space.Publ. Mat., Barc. 57 (2013), 3-56. Zbl 1284.42055, MR 3058926, 10.5565/PUBLMAT_57113_01
Reference: [11] Kairema, A.: Sharp weighted bounds for fractional integral operators in a space of homogeneous type.Math. Scand. 114 (2014), 226-253. Zbl 1302.47075, MR 3206387, 10.7146/math.scand.a-17109
Reference: [12] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces.Bull. Sci. Math. 137 (2013), 76-96. Zbl 1267.46045, MR 3007101, 10.1016/j.bulsci.2012.03.008
Reference: [13] Maeda, F.-Y., Ohno, T., Shimomura, T.: Boundedness of the maximal operator on Musielak-Orlicz-Morrey spaces.Tohoku Math. J. (2) 69 (2017), 483-495. Zbl 1387.42017, MR 3732884, 10.2748/tmj/1512183626
Reference: [14] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: An elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces $L^{1,\nu,\beta}(G)$.Hiroshima Math. J. 38 (2008), 425-436. Zbl 1175.31005, MR 2477751, 10.32917/hmj/1233152779
Reference: [15] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials.J. Math. Soc. Japan 62 (2010), 707-744. Zbl 1200.26007, MR 2648060, 10.2969/jmsj/06230707
Reference: [16] Mizuta, Y., Shimomura, T.: Continuity properties of Riesz potentials of Orlicz functions.Tohoku Math. J. (2) 61 (2009), 225-240. Zbl 1181.46026, MR 2541407, 10.2748/tmj/1245849445
Reference: [17] Mizuta, Y., Shimomura, T.: Sobolev's inequality for Riesz potentials of functions in Morrey spaces of integral form.Math. Nachr. 283 (2010), 1336-1352. Zbl 1211.46026, MR 2731137, 10.1002/mana.200710122
Reference: [18] Mizuta, Y., Shimomura, T., Sobukawa, T.: Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces.Osaka J. Math. 46 (2009), 255-271. Zbl 1186.31003, MR 2531149
Reference: [19] C. B. Morrey, Jr.: On the solutions of quasi-linear elliptic partial differential equations.Trans. Am. Math. Soc. 43 (1938), 126-166. Zbl 0018.40501, MR 1501936, 10.1090/S0002-9947-1938-1501936-8
Reference: [20] Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces.Math. Nachr. 166 (1994), 95-103. Zbl 0837.42008, MR 1273325, 10.1002/mana.19941660108
Reference: [21] Nakai, E.: Generalized fractional integrals on Orlicz-Morrey spaces.Banach and Function Spaces Yokohama Publishers, Yokohama (2004), 323-333. Zbl 1118.42005, MR 2146936
Reference: [22] Nazarov, F., Treil, S., Volberg, A.: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces.Int. Math. Res. Not. 1997 (1997), 703-726. Zbl 0889.42013, MR 1470373, 10.1155/S1073792897000469
Reference: [23] Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces.Int. Math. Res. Not. 1998 (1998), 463-487. Zbl 0918.42009, MR 1626935, 10.1155/S1073792898000312
Reference: [24] Ohno, T., Shimomura, T.: On Sobolev-type inequalities on Morrey spaces of an integral form.Taiwanese J. Math. 26 (2022), 831-845. Zbl 07579496, MR 4484273, 10.11650/tjm/220203
Reference: [25] Peetre, J.: On the theory of $L_{p,\lambda}$ spaces.J. Funct. Anal. 4 (1969), 71-87. Zbl 0175.42602, MR 0241965, 10.1016/0022-1236(69)90022-6
Reference: [26] Samko, N. G., Samko, S. G., Vakulov, B. G.: Weighted Sobolev theorem in Lebesgue spaces with variable exponent.J. Math. Anal. Appl. 335 (2007), 560-583. Zbl 1142.46018, MR 2340340, 10.1016/j.jmaa.2007.01.091
Reference: [27] Sawano, Y.: Sharp estimates of the modified Hardy-Littlewood maximal operator on the nonhomogeneous space via covering lemmas.Hokkaido Math. J. 34 (2005), 435-458. Zbl 1088.42010, MR 2159006, 10.14492/hokmj/1285766231
Reference: [28] Sawano, Y., Shigematsu, M., Shimomura, T.: Generalized Riesz potentials of functions in Morrey spaces $L^{(1,\varphi;\kappa)}(G)$ over non-doubling measure spaces.Forum Math. 32 (2020), 339-359. Zbl 1436.42029, MR 4069939, 10.1515/forum-2019-0140
Reference: [29] Sawano, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents.Collect. Math. 64 (2013), 313-350. Zbl 1280.31001, MR 3084400, 10.1007/s13348-013-0082-7
Reference: [30] Sawano, Y., Shimomura, T.: Maximal operator on Orlicz spaces of two variable exponents over unbounded quasi-metric measure spaces.Proc. Am. Math. Soc. 147 (2019), 2877-2885. Zbl 1416.42025, MR 3973891, 10.1090/proc/14225
Reference: [31] Sawano, Y., Shimomura, T., Tanaka, H.: A remark on modified Morrey spaces on metric measure spaces.Hokkaido Math. J. 47 (2018), 1-15. Zbl 1390.42032, MR 3773722, 10.14492/hokmj/1520928055
Reference: [32] Serrin, J.: A remark on the Morrey potential.Control Methods in PDE-Dynamical Systems Contemporary Mathematics 426. AMS, Providence (2007), 307-315. Zbl 1129.31003, MR 2311532, 10.1090/conm/426
Reference: [33] Sihwaningrum, I., Sawano, Y.: Weak and strong type estimates for fractional integral operators on Morrey spaces over metric measure spaces.Eurasian Math. J. 4 (2013), 76-81. Zbl 1277.42019, MR 3118893
Reference: [34] Stempak, K.: Examples of metric measure spaces related to modified Hardy-Littlewood maximal operators.Ann. Acad. Sci. Fenn., Math. 41 (2016), 313-314. Zbl 1337.42023, MR 3467713, 10.5186/aasfm.2016.4119
Reference: [35] Strömberg, J.-O.: Weak type $L^1$ estimates for maximal functions on non-compact symmetric spaces.Ann. Math. (2) 114 (1981), 115-126. Zbl 0472.43010, MR 625348, 10.2307/1971380
Reference: [36] Terasawa, Y.: Outer measures and weak type $(1,1)$ estimates of Hardy-Littlewood maximal operators.J. Inequal. Appl. 2006 (2006), Article ID 15063, 13 pages. Zbl 1090.42012, MR 2215476, 10.1155/JIA/2006/15063
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo