Previous |  Up |  Next

Article

Title: On $n$-submodules and $G.n$-submodules (English)
Author: Karimzadeh, Somayeh
Author: Moghaderi, Javad
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 1
Year: 2023
Pages: 245-262
Summary lang: English
.
Category: math
.
Summary: We investigate some properties of $n$-submodules. More precisely, we find a necessary and sufficient condition for every proper submodule of a module to be an $n$-submodule. Also, we show that if $M$ is a finitely generated $R$-module and $ \sqrt {{{\rm Ann} }_R(M)}$ is a prime ideal of $R$, then $M$ has $n$-submodule. Moreover, we define the notion of \hbox {$G.n$-submodule}, which is a generalization of the notion of $n$-submodule. We find some characterizations of $G.n$-submodules and we examine the way the aforementioned notions are related to each other. (English)
Keyword: $n$-ideal
Keyword: $n$-submodule
Keyword: primary submodule
MSC: 13C13
MSC: 16D10
idZBL: Zbl 07655766
idMR: MR4541100
DOI: 10.21136/CMJ.2022.0094-22
.
Date available: 2023-02-03T11:14:20Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151515
.
Reference: [1] Ahmadi, M., Moghaderi, J.: $n$-submodules.Iran. J. Math. Sci. Inform. 17 (2022), 177-190. Zbl 7541073, MR 4411831, 10.52547/ijmsi.17.1.177
Reference: [2] Ansari-Toroghy, H., Farshadifar, F.: The dual notion of multiplication modules.Taiwanese J. Math. 11 (2007), 1189-1201. Zbl 1137.16302, MR 2348561, 10.11650/twjm/1500404812
Reference: [3] Atiyah, M. F., Macdonald, I. G.: An Introduction to Commutative Algebra.Addision-Wesley, Reading (1969). Zbl 0175.03601, MR 0242802
Reference: [4] Barnard, A.: Multiplication modules.J. Algebra 71 (1981), 174-178. Zbl 0468.13011, MR 0627431, 10.1016/0021-8693(81)90112-5
Reference: [5] El-Bast, Z. A., Smith, P. F.: Multiplication modules.Commun. Algebra 16 (1988), 755-779. Zbl 0642.13002, MR 0932633, 10.1080/00927878808823601
Reference: [6] Abdullah, N. Khalid: Irreducible submoduls and strongly irreducible submodules.Tikrit J. Pure Sci. 17 (2012), 219-224.
Reference: [7] Koç, S., Tekir, Ü.: $r$-submodules and $sr$-submodules.Turk. J. Math. 42 (2018), 1863-1876. Zbl 1424.13019, MR 3843951, 10.3906/mat-1702-20
Reference: [8] Lu, C.: Prime submodules of modules.Comment. Math. Univ. St. Pauli 33 (1984), 61-69. Zbl 0575.13005, MR 0741378
Reference: [9] Macdonald, I. G.: Secondary representation of modules over a commutative ring.Convegno di Algebra Commutativa Symposia Mathematica 11. Academic Press, London (1973), 23-43. Zbl 0271.13001, MR 0342506
Reference: [10] McCasland, R. L., Moore, M. E.: Prime submodules.Commun. Algebra 20 (1992), 1803-1817. Zbl 0776.13007, MR 1162609, 10.1080/00927879208824432
Reference: [11] McCasland, R. L., Moore, M. E., Smith, P. F.: On the spectrum of a module over commutative ring.Commun. Algebra 25 (1997), 79-103. Zbl 0876.13002, MR 1429749, 10.1080/00927879708825840
Reference: [12] Mohamadian, R.: $r$-ideals in commutative rings.Turk. J. Math. 39 (2015), 733-749. Zbl 1348.13003, MR 3395802, 10.3906/mat-1503-35
Reference: [13] Moore, M. E., Smith, S. J.: Prime and radical submodules of modules over commutative rings.Commun. Algebra 30 (2002), 5037-5064. Zbl 1049.13001, MR 1976290, 10.1081/agb-120014684
Reference: [14] Tekir, U., Koc, S., Oral, K. H.: $n$-ideals of commutative rings.Filomat 31 (2017), 2933-2941. Zbl 07418085, MR 3639382, 10.2298/FIL1710933T
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo