Previous |  Up |  Next

Article

Title: Consecutive square-free values of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$ (English)
Author: Feng, Ya-Fang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 1
Year: 2023
Pages: 297-310
Summary lang: English
.
Category: math
.
Summary: We show that for any given integer $k$ there exist infinitely many consecutive square-free numbers of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$. We also establish an asymptotic formula for $1\leq x, y, z \leq H$ such that $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$ are square-free. The method we used in this paper is due to Tolev. (English)
Keyword: square-free number
Keyword: Salié sum
Keyword: Gauss sum
MSC: 11L05
MSC: 11L40
MSC: 11N37
idZBL: Zbl 07655769
idMR: MR4541103
DOI: 10.21136/CMJ.2022.0154-22
.
Date available: 2023-02-03T11:15:56Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151518
.
Reference: [1] Carlitz, L.: On a problem in additive arithmetic. II.Q. J. Math., Oxf. Ser. 3 (1932), 273-290. Zbl 0006.10401, 10.1093/qmath/os-3.1.273
Reference: [2] Dimitrov, S.: On the number of pairs of positive integers $x,y\leq H$ such that $x^2+y^2+1$, $x^2+y^2+2$ are square-free.Acta Arith. 194 (2020), 281-294. Zbl 1469.11263, MR 4096105, 10.4064/aa190118-25-7
Reference: [3] Dimitrov, S.: Pairs of square-free values of the type $n^2+1$, $n^2+2$.Czech. Math. J. 71 (2021), 991-1009. Zbl 07442468, MR 4339105, 10.21136/CMJ.2021.0165-20
Reference: [4] Estermann, T.: A new application of the Hardy-Littlewood-Kloosterman method.Proc. Lond. Math. Soc., III. Ser. 12 (1962), 425-444. Zbl 0105.03606, MR 0137677, 10.1112/plms/s3-12.1.425
Reference: [5] Heath-Brown, D. R.: The square sieve and consecutive square-free numbers.Math. Ann. 266 (1984), 251-259. Zbl 0514.10038, MR 0730168, 10.1007/BF01475576
Reference: [6] Louvel, B.: The first moment of Salié sums.Monatsh. Math. 168 (2012), 523-543. Zbl 1314.11050, MR 2993962, 10.1007/s00605-011-0366-5
Reference: [7] Reuss, T.: Pairs of $k$-free numbers, consecutive square-full numbers.Available at https://arxiv.org/abs/1212.3150v2 (2012), 28 pages.
Reference: [8] Tolev, D. I.: On the number of pairs of positive integers $x,y\leq H$ such that $x^2+y^2+1$ is squarefree.Monatsh. Math. 165 (2012), 557-567. Zbl 1297.11118, MR 2891268, 10.1007/s00605-010-0246-4
Reference: [9] Zhou, G.-L., Ding, Y.: On the square-free values of the polynomial $x^2+y^2+z^2+k$.J. Number Theory 236 (2022), 308-322. Zbl 07493027, MR 4395352, 10.1016/j.jnt.2021.07.022
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo