Title:
|
On the inclusions of $X^\Phi $ spaces (English) |
Author:
|
Tabatabaie, Seyyed Mohammad |
Author:
|
Bagheri Salec, Alireza |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
148 |
Issue:
|
1 |
Year:
|
2023 |
Pages:
|
65-72 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We give some equivalent conditions (independent from the Young functions) for inclusions between some classes of $X^\Phi $ spaces, where $\Phi $ is a Young function and $X$ is a quasi-Banach function space on a $\sigma $-finite measure space $(\Omega ,\mathcal {A},\mu )$. (English) |
Keyword:
|
Young function |
Keyword:
|
Orlicz space |
Keyword:
|
quasi-Banach function space |
Keyword:
|
inclusion |
MSC:
|
46E30 |
idZBL:
|
Zbl 07655813 |
idMR:
|
MR4536310 |
DOI:
|
10.21136/MB.2022.0064-21 |
. |
Date available:
|
2023-02-03T11:21:57Z |
Last updated:
|
2023-09-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151527 |
. |
Reference:
|
[1] Campo, R. del, Fernández, A., Mayoral, F., Naranjo, F.: Orlicz spaces associated to a quasi-Banach function space: Applications to vector measures and interpolation.Collect. Math. 72 (2021), 481-499. Zbl 07401995, MR 4297141, 10.1007/s13348-020-00295-1 |
Reference:
|
[2] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces.Pure and Applied Mathematics 146. Marcel Dekker, New York (1991). Zbl 0724.46032, MR 1113700 |
Reference:
|
[3] Romero, J. L.: When is $L^p(\mu)$ contained in $L^q(\mu)$?.Am. Math. Mon. 90 (1983), 203-206. Zbl 0549.46018, MR 0691371, 10.2307/2975553 |
Reference:
|
[4] Sawano, Y., Tabatabaie, S. M.: Inclusions in generalized Orlicz spaces.Bull. Iran. Math. Soc. 47 (2021), 1227-1233. Zbl 07377360, MR 4278242, 10.1007/s41980-020-00437-y |
Reference:
|
[5] Subramanian, B.: On the inclusion $L^p(\mu)\subset L^q(\mu)$.Am. Math. Mon. 85 (1978), 479-481. Zbl 0388.46021, MR 0482134, 10.2307/2320071 |
Reference:
|
[6] Villani, A.: Another note on the inclusion $L^p(\mu) \subset L^q(\mu)$.Am. Math. Mon. 92 (1985), 485-487. Zbl 0592.46028, MR 0801221, 10.2307/2322503 |
. |