Previous |  Up |  Next

Article

Title: On the meromorphic solutions of a certain type of nonlinear difference-differential equation (English)
Author: Majumder, Sujoy
Author: Mahato, Lata
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 1
Year: 2023
Pages: 73-94
Summary lang: English
.
Category: math
.
Summary: The main objective of this paper is to give the specific forms of the meromorphic solutions of the nonlinear difference-differential equation $$ f^{n}(z)+P_{d}(z,f)=p_{1}(z){\rm e}^{\alpha _{1}(z)}+p_{2}(z){\rm e}^{\alpha _{2}(z)}, $$ where $P_d(z,f)$ is a difference-differential polynomial in $f(z)$ of degree $d\leq n-1$ with small functions of $f(z)$ as its coefficients, $p_1$, $p_2$ are nonzero rational functions and $\alpha _1$, $\alpha _2$ are non-constant polynomials. More precisely, we find out the conditions for ensuring the existence of meromorphic solutions of the above equation. (English)
Keyword: nonlinear differential equation
Keyword: differential polynomial
Keyword: Nevanlinna's value distribution theory
MSC: 30D30
MSC: 30D35
MSC: 33E30
MSC: 34M05
idZBL: Zbl 07655814
idMR: MR4536311
DOI: 10.21136/MB.2022.0186-20
.
Date available: 2023-02-03T11:22:27Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151528
.
Reference: [1] Halburd, R., Korhonen, R., Tohge, K.: Holomorphic curves with shift-invariant hyperplane preimages.Trans. Am. Math. Soc. 366 (2014), 4267-4298. Zbl 1298.32012, MR 3206459, 10.1090/S0002-9947-2014-05949-7
Reference: [2] Hayman, W. K.: Meromorphic Functions.Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). Zbl 0115.06203, MR 0164038
Reference: [3] Heittokangas, J., Korhonen, R., Laine, I.: On meromorphic solutions of certain nonlinear differential equations.Bull. Aust. Math. Soc. 66 (2002), 331-343. Zbl 1047.34101, MR 1932356, 10.1017/S000497270004017X
Reference: [4] Laine, I.: Nevanlinna Theory and Complex Differential Equations.de Gruyter Studies in Mathematics 15. Walter de Gruyter, Berlin (1993). Zbl 0784.30002, MR 1207139, 10.1515/9783110863147
Reference: [5] Li, P.: Entire solutions of certain type of differential equations. II.J. Math. Anal. Appl. 375 (2011), 310-319. Zbl 1206.30046, MR 2735715, 10.1016/j.jmaa.2010.09.026
Reference: [6] Li, P., Yang, C.-C.: On the nonexistence of entire solutions of certain type of nonlinear differential equations.J. Math. Anal. Appl. 320 (2006), 827-835. Zbl 1100.34066, MR 2225998, 10.1016/j.jmaa.2005.07.066
Reference: [7] Liao, L.-W., Yang, C.-C., Zhang, J.-J.: On meromorphic solutions of certain type of nonlinear differential equations.Ann. Acad. Sci. Fenn., Math. 38 (2013), 581-593. Zbl 1303.30029, MR 3113096, 10.5186/aasfm.2013.3840
Reference: [8] Lü, W., Wu, L., Wang, D., Yang, C.-C.: The existence of solutions of certain type of nonlinear difference-differential equations.Open Math. 16 (2018), 806-815. Zbl 1412.34239, MR 3830193, 10.1515/math-2018-0071
Reference: [9] Yang, C.-C.: On deficiencies of differential polynomials. II.Math. Z. 125 (1972), 107-112. Zbl 0217.38402, MR 0294642, 10.1007/BF01110921
Reference: [0] Yang, C.-C., Li, P.: On the transcendental solutions of a certain type of nonlinear differential equations.Arch. Math. 82 (2004), 442-448. Zbl 1052.34083, MR 2061450, 10.1007/s00013-003-4796-8
Reference: [11] Yang, C.-C., Yi, H.-X.: Uniqueness Theory of Meromorphic Functions.Mathematics and its Applications (Dordrecht) 557. Kluwer Academic, Dordrecht (2003). Zbl 1070.30011, MR 2105668, 10.1007/978-94-017-3626-8
.

Files

Files Size Format View
MathBohem_148-2023-1_6.pdf 291.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo