[1] Black, T., Fuest, M., Lankeit, J.: 
Relaxed parameter conditions for chemotactic collapse in logistic-type parabolic-elliptic Keller-Segel systems. Z. Angew. Math. Phys. 72 (96) (2021), 23 pp. 
MR 4252274[3] Fuest, M.: 
Approaching optimality in blow-up results for Keller-Segel systems with logistic-type dampening. NoDEA Nonlinear Differential Equations Appl. 28 (16) (2021), 17 pp. 
MR 4223515[4] Ishida, S., Yokota, T.: 
Global existence of weak solutions to quasilinear degenerate Keller–Segel systems of parabolic–parabolic type. J. Differential Equations 252 (2) (2012), 1421–1440. 
DOI 10.1016/j.jde.2011.02.012 | 
MR 2853545[5] Ishida, S., Yokota, T.: 
Blow-up in finite or infinite time for quasilinear degenerate Keller–Segel systems of parabolic–parabolic type. Discrete Contin. Dyn. Syst. Ser. B 18 (10) (2013), 2569–2596. 
MR 3124753[6] Lankeit, J.: 
Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion. J. Differential Equations 262 (7) (2017), 4052–4084. 
DOI 10.1016/j.jde.2016.12.007 | 
MR 3599425[7] Tanaka, Y.: 
Boundedness and finite-time blow-up in a quasilinear parabolic–elliptic chemotaxis system with logistic source and nonlinear production. J. Math. Anal. Appl. 506 (2022), 29 pp., no. 125654. 
DOI 10.1016/j.jmaa.2021.125654 | 
MR 4315564[8] Tanaka, Y., Yokota, T.: 
Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete Contin. Dyn. Syst. Ser. B 28 (1) (2023), 262–286. 
DOI 10.3934/dcdsb.2022075 | 
MR 4489725[10] Winkler, M.: 
Finite-time blow-up in low-dimensional Keller–Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. 69 (69) (2018), 40 pp. 
MR 3772030[11] Winkler, M., Djie, K.C.: 
Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. 72 (2) (2010), 1044–1064. 
DOI 10.1016/j.na.2009.07.045 | 
MR 2579368