Previous |  Up |  Next

Article

Title: Existence of blow-up solutions for a degenerate parabolic-elliptic Keller–Segel system with logistic source (English)
Author: Tanaka, Yuya
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 2
Year: 2023
Pages: 223-230
Summary lang: English
.
Category: math
.
Summary: This paper deals with existence of finite-time blow-up solutions to a degenerate parabolic–elliptic Keller–Segel system with logistic source. Recently, finite-time blow-up was established for a degenerate Jäger–Luckhaus system with logistic source. However, blow-up solutions of the aforementioned system have not been obtained. The purpose of this paper is to construct blow-up solutions of a degenerate Keller–Segel system with logistic source. (English)
Keyword: degenerate Keller–Segel system
Keyword: logistic source
MSC: 35B44
MSC: 35K65
MSC: 92C17
idZBL: Zbl 07675592
idMR: MR4563034
DOI: 10.5817/AM2023-2-223
.
Date available: 2023-02-22T14:50:10Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151569
.
Reference: [1] Black, T., Fuest, M., Lankeit, J.: Relaxed parameter conditions for chemotactic collapse in logistic-type parabolic-elliptic Keller-Segel systems.Z. Angew. Math. Phys. 72 (96) (2021), 23 pp. MR 4252274
Reference: [2] Fuest, M.: Blow-up profiles in quasilinear fully parabolic Keller-Segel systems.Nonlinearity 33 (5) (2020), 2306–2334. MR 4105360, 10.1088/1361-6544/ab7294
Reference: [3] Fuest, M.: Approaching optimality in blow-up results for Keller-Segel systems with logistic-type dampening.NoDEA Nonlinear Differential Equations Appl. 28 (16) (2021), 17 pp. MR 4223515
Reference: [4] Ishida, S., Yokota, T.: Global existence of weak solutions to quasilinear degenerate Keller–Segel systems of parabolic–parabolic type.J. Differential Equations 252 (2) (2012), 1421–1440. MR 2853545, 10.1016/j.jde.2011.02.012
Reference: [5] Ishida, S., Yokota, T.: Blow-up in finite or infinite time for quasilinear degenerate Keller–Segel systems of parabolic–parabolic type.Discrete Contin. Dyn. Syst. Ser. B 18 (10) (2013), 2569–2596. MR 3124753
Reference: [6] Lankeit, J.: Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion.J. Differential Equations 262 (7) (2017), 4052–4084. MR 3599425, 10.1016/j.jde.2016.12.007
Reference: [7] Tanaka, Y.: Boundedness and finite-time blow-up in a quasilinear parabolic–elliptic chemotaxis system with logistic source and nonlinear production.J. Math. Anal. Appl. 506 (2022), 29 pp., no. 125654. MR 4315564, 10.1016/j.jmaa.2021.125654
Reference: [8] Tanaka, Y., Yokota, T.: Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production.Discrete Contin. Dyn. Syst. Ser. B 28 (1) (2023), 262–286. MR 4489725, 10.3934/dcdsb.2022075
Reference: [9] Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction.J. Math. Anal. Appl. 384 (2) (2011), 261–272. MR 2825180, 10.1016/j.jmaa.2011.05.057
Reference: [10] Winkler, M.: Finite-time blow-up in low-dimensional Keller–Segel systems with logistic-type superlinear degradation.Z. Angew. Math. Phys. 69 (69) (2018), 40 pp. MR 3772030
Reference: [11] Winkler, M., Djie, K.C.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect.Nonlinear Anal. 72 (2) (2010), 1044–1064. MR 2579368, 10.1016/j.na.2009.07.045
.

Files

Files Size Format View
ArchMathRetro_059-2023-2_9.pdf 441.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo