Previous |  Up |  Next

Article

Title: Continuous dependence and general decay of solutions for a wave equation with a nonlinear memory term (English)
Author: Quynh, Doan Thi Nhu
Author: Nhan, Nguyen Huu
Author: Ngoc, Le Thi Phuong
Author: Long, Nguyen Thanh
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 2
Year: 2023
Pages: 209-254
Summary lang: English
.
Category: math
.
Summary: We study existence, uniqueness, continuous dependence, general decay of solutions of an initial boundary value problem for a viscoelastic wave equation with strong damping and nonlinear memory term. At first, we state and prove a theorem involving local existence and uniqueness of a weak solution. Next, we establish a sufficient condition to get an estimate of the continuous dependence of the solution with respect to the kernel function and the nonlinear terms. Finally, under suitable conditions to obtain the global solution, we prove the general decay property with positive initial energy for this global solution.\looseness -1 (English)
Keyword: viscoelastic equations
Keyword: strong damping
Keyword: nonlinear memory
Keyword: general decay
MSC: 35L20
MSC: 35L70
idZBL: Zbl 07675567
idMR: MR4574654
DOI: 10.21136/AM.2022.0200-21
.
Date available: 2023-03-31T09:36:10Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151613
.
Reference: [1] Bayraktar, S., Gür, Ş.: Continuous dependence of solutions for damped improved Boussinesq equation.Turk. J. Math. 44 (2020), 334-341. Zbl 1450.35042, MR 4059543, 10.3906/mat-1912-20
Reference: [2] Benilan, P., Crandall, M. G.: The continuous dependence on $\phi$ of solutions of $u_{t}-\Delta_{\phi}(u)=0$.Indiana Univ. Math. J. 30 (1981), 161-177. Zbl 0482.35012, MR 0604277, 10.1512/iumj.1981.30.30014
Reference: [3] Boumaza, N., Boulaaras, S.: General decay for Kirchhoff type in viscoelasticity with not necessarily decreasing kernel.Math. Methods Appl. Sci. 41 (2018), 6050-6069. Zbl 1415.35038, MR 3879228, 10.1002/mma.5117
Reference: [4] Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Martinez, P.: General decay rate estimates for viscoelastic dissipative systems.Nonlinear Anal., Theory Methods Appl., Ser. A 68 (2008), 177-193. Zbl 1124.74009, MR 2361147, 10.1016/j.na.2006.10.040
Reference: [5] Cockburn, B., Gripenber, G.: Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations.J. Differ. Equations 151 (1999), 231-251. Zbl 0921.35017, MR 1669570, 10.1006/jdeq.1998.3499
Reference: [6] Conti, M., Pata, V.: General decay properties of abstract linear viscoelasticity.Z. Angew. Math. Phys. 71 (2020), Article ID 6, 21 pages. Zbl 1430.35030, MR 4041122, 10.1007/s00033-019-1229-5
Reference: [7] D'Abbicco, M.: The influence of a nonlinear memory on the damped wave equation.Nonlinear Anal., Theory Methods Appl., Ser. A 95 (2014), 130-145. Zbl 1284.35286, MR 3130512, 10.1016/j.na.2013.09.006
Reference: [8] D'Abbicco, M., Lucente, S.: The beam equation with nonlinear memory.Z. Angew. Math. Phys. 67 (2016), Article ID 60, 18 pages. Zbl 1361.35116, MR 3493963, 10.1007/s00033-016-0655-x
Reference: [9] Douglis, A.: The continuous dependence of generalized solutions of non-linear partial differential equations upon initial data.Commun. Pure Appl. Math. 14 (1961), 267-284. Zbl 0117.31102, MR 0139848, 10.1002/cpa.3160140307
Reference: [10] Duvaut, G., Lions, J. L.: Inequalities in Mechanics and Physics.Grundlehren der mathematischen Wissenschaften 219. Springer, Berlin (1976). Zbl 0331.35002, MR 0521262, 10.1007/978-3-642-66165-5
Reference: [11] Ekinci, F., Pişkin, E., Boulaaras, S. M., Mekawy, I.: Global existence and general decay of solutions for a quasilinear system with degenerate damping terms.J. Funct. Spaces 2021 (2021), Article ID 4316238, 10 pages. Zbl 1472.35239, MR 4283631, 10.1155/2021/4316238
Reference: [12] Fino, A. Z.: Critical exponent for damped wave equations with nonlinear memory.Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 5495-5505. Zbl 1222.35025, MR 2819292, 10.1016/j.na.2011.01.039
Reference: [13] Gripenberg, G.: Global existence of solutions of Volterra integrodifferential equations of parabolic type.J. Differ. Equations 102 (1993), 382-390. Zbl 0780.45012, MR 1216735, 10.1006/jdeq.1993.1035
Reference: [14] Gür, Ş., Uysal, M. E.: Continuous dependence of solutions to the strongly damped nonlinear Klein-Gordon equation.Turk. J. Math. 42 (2018), 904-910. Zbl 1424.35261, MR 3804959, 10.3906/mat-1706-30
Reference: [15] Han, X., Wang, M.: General decay of energy for a viscoelastic equation with nonlinear damping.J. Franklin Inst. 347 (2010), 806-817. Zbl 1286.35148, MR 2645392, 10.1016/j.jfranklin.2010.02.010
Reference: [16] Hao, J., Wei, H.: Blow-up and global existence for solution of quasilinear viscoelastic wave equation with strong damping and source term.Bound. Value Probl. 2017 (2017), Article ID 65, 12 pages. Zbl 1379.35192, MR 3647200, 10.1186/s13661-017-0796-7
Reference: [17] Hassan, J. H., Messaoudi, S. A.: General decay results for a viscoelastic wave equation with a variable exponent nonlinearity.Asymptotic Anal. 125 (2021), 365-388. MR 4374601, 10.3233/ASY-201661
Reference: [18] Hrusa, W. J.: Global existence and asymptotic stability for a semilinear hyperbolic Volterra equation with large initial data.SIAM J. Math. Anal. 16 (1985), 110-134. Zbl 0571.45007, MR 0772871, 10.1137/0516007
Reference: [19] Jleli, M., Samet, B., Vetro, C.: Large time behavior for inhomogeneous damped wave equations with nonlinear memory.Symmetry 12 (2020), Article ID 1609, 12 pages. 10.3390/sym12101609
Reference: [20] John, F.: Continuous dependence on data for solutions of partial differential equations with a prescribed bound.Commun. Pure Appl. Math. 13 (1960), 551-586. Zbl 0097.08101, MR 130456, 10.1002/cpa.3160130402
Reference: [21] Kaddour, T. H., Reissig, M.: Global well-posedness for effectively damped wave models with nonlinear memory.Commun. Pure Appl. Anal. 20 (2021), 2039-2064. Zbl 1466.35264, MR 4259639, 10.3934/cpaa.2021057
Reference: [22] Kafini, M., Messaoudi, S. A.: A blow-up result in a Cauchy viscoelastic problem.Appl. Math. Lett. 21 (2008), 549-553. Zbl 1149.35076, MR 2412376, 10.1016/j.aml.2007.07.004
Reference: [23] Kafini, M., Mustafa, M. I.: Blow-up result in a Cauchy viscoelastic problem with strong damping and dispersive.Nonlinear Anal., Real World Appl. 20 (2014), 14-20. Zbl 1295.35129, MR 3233895, 10.1016/j.nonrwa.2014.04.005
Reference: [24] Li, Q., He, L.: General decay and blow-up of solutions for a nonlinear viscoelastic wave equation with strong damping.Bound. Value Probl. 2018 (2018), Article ID 153, 22 pages. MR 3859565, 10.1186/s13661-018-1072-1
Reference: [25] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Etudes mathematiques. Dunod, Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [26] Long, N. T., Dinh, A. P. N., Truong, L. X.: Existence and decay of solutions of a nonlinear viscoelastic problem with a mixed nonhomogeneous condition.Numer. Funct. Anal. Optim. 29 (2008), 1363-1393. Zbl 1162.35053, MR 2479113, 10.1080/01630560802605955
Reference: [27] Mesloub, F., Boulaaras, S.: General decay for a viscoelastic problem with not necessarily decreasing kernel.J. Appl. Math. Comput. 58 (2018), 647-665. Zbl 1403.35050, MR 3847059, 10.1007/s12190-017-1161-9
Reference: [28] Messaoudi, S. A.: Blow up and global existence in a nonlinear viscoelastic wave equation.Math. Nachr. 260 (2003), 58-66. Zbl 1035.35082, MR 2017703, 10.1002/mana.200310104
Reference: [29] Messaoudi, S. A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source.Nonlinear Anal., Theory Methods Appl., Ser. A 69 (2008), 2589-2598. Zbl 1154.35066, MR 2446355, 10.1016/j.na.2007.08.035
Reference: [30] Mustafa, M. I.: General decay result for nonlinear viscoelastic equations.J. Math. Anal. Appl. 457 (2018), 134-152. Zbl 1379.35028, MR 3702699, 10.1016/j.jmaa.2017.08.019
Reference: [31] Mustafa, M. I.: Optimal decay rates for the viscoelastic wave equation.Math. Methods Appl. Sci. 41 (2018), 192-204. Zbl 1391.35058, MR 3745365, 10.1002/mma.4604
Reference: [32] Ngoc, L. T. P., Quynh, D. T. N., Triet, N. A., Long, N. T.: Linear approximation and asymptotic expansion associated to the Robin-Dirichlet problem for a Kirchhoff-Carrier equation with a viscoelastic term.Kyungpook Math. J. 59 (2019), 735-769. MR 4057771
Reference: [33] Pan, J. Q.: The continuous dependence on nonlinearities of solutions of the Neumann problem of a singular parabolic equation.Nonlinear Anal., Theory Methods Appl., Ser. A 67 (2007), 2081-2090. Zbl 1123.35026, MR 2331859, 10.1016/j.na.2006.09.017
Reference: [34] Quynh, D. T. N., Nam, B. D., Thanh, L. T. M., Dung, T. T. M., Nhan, N. H.: High-order iterative scheme for a viscoelastic wave equation and numerical results.Math. Probl. Eng. 2021 (2021), Article ID 9917271, 27 pages. MR 4274176, 10.1155/2021/9917271
Reference: [35] Shang, Y., Guo, B.: On the problem of the existence of global solutions for a class of nonlinear convolutional intergro-differential equations of pseudoparabolic type.Acta Math. Appl. Sin. 26 (2003), 511-524 Chinese. Zbl 1057.45004, MR 2022221
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo