Title: | On extending ${\rm C}^{k}$ functions from an open set to $\mathbb R$ with applications (English) |
Author: | Burgess, Walter D. |
Author: | Raphael, Robert M. |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 73 |
Issue: | 2 |
Year: | 2023 |
Pages: | 487-498 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | For $k\in {\mathbb N} \cup \{\infty \}$ and $U$ open in $ {\mathbb R}$, let ${\rm C}^{k}(U)$ be the ring of real valued functions on $U$ with the first $k$ derivatives continuous. It is shown that for $f\in {\rm C}^{k}(U)$ there is $g\in {\rm C}^{\infty } ({\mathbb R})$ with $U\subseteq {\rm coz} g$ and $h\in {\rm C}^{k} ({\mathbb R})$ with $fg|_U=h|_U$. The function $f$ and its $k$ derivatives are not assumed to be bounded on $U$. The function $g$ is constructed using splines based on the Mollifier function. Some consequences about the ring ${\rm C}^{k} ({\mathbb R})$ are deduced from this, in particular that ${\rm Q}_{\rm cl} ({\rm C}^{k} ({\mathbb R})) = {\rm Q}({\rm C}^{k} ({\mathbb R}))$. (English) |
Keyword: | ${\rm C}^k$ function |
Keyword: | spline |
Keyword: | ring of quotient |
Keyword: | Mollifier function |
MSC: | 13B30 |
MSC: | 26A24 |
MSC: | 54C30 |
idZBL: | Zbl 07729519 |
idMR: | MR4586906 |
DOI: | 10.21136/CMJ.2023.0445-21 |
. | |
Date available: | 2023-05-04T17:46:43Z |
Last updated: | 2023-09-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151669 |
. | |
Reference: | [1] Anderson, D. F., Badawi, A.: Divisibility conditions in commutative rings with zerodivisors.Commun. Algebra 30 (2002), 4031-4047. Zbl 1063.13003, MR 1922326, 10.1081/AGB-120005834 |
Reference: | [2] Azarpanah, F., Ghashghaei, E., Ghoulipour, M.: $C(X)$: Something old and something new.Commun. Algebra 49 (2021), 185-206. Zbl 1453.13008, MR 4193623, 10.1080/00927872.2020.1797070 |
Reference: | [3] Barr, M., Burgess, W. D., Raphael, R.: Ring epimorphisms and $C(X)$.Theory Appl. Categ. 11 (2003), 283-308. Zbl 1042.54007, MR 1988400 |
Reference: | [4] Barr, M., Kennison, J. F., Raphael, R.: Limit closures of classes of commutative rings.Theory Appl. Categ. 30 (2015), 229-304. Zbl 1327.13084, MR 3322157 |
Reference: | [5] Blair, R. L., Hager, A. W.: Extensions of zero-sets and real-valued functions.Math. Z. 136 (1974), 41-52. Zbl 0264.54011, MR 0385793, 10.1007/BF01189255 |
Reference: | [6] Fine, N. J., Gillman, L., Lambek, J.: Rings of Quotients of Rings of Functions.McGill University Press, Montreal (1966). Zbl 0143.35704, MR 0200747 |
Reference: | [7] Gillman, L., Jerison, M.: Ring of Continuous Functions.Graduate Texts in Mathematics 43. Springer, New York (1976). Zbl 0327.46040, MR 0407579, 10.1007/978-1-4615-7819-2 |
Reference: | [8] Henriksen, M.: Rings of continuous functions from an algebraic point of view.Ordered Algebraic Structures Mathematics and its Applications 55. Kluwer Academic, Dordrecht (1989), 143-174. Zbl 0739.46011, MR 1094833, 10.1007/978-94-009-2472-7_12 |
Reference: | [9] Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis.Grundlehren der Mathematischen Wissenschaften 256. Springer, Berlin (1983). Zbl 0521.35001, MR 0717035, 10.1007/978-3-642-96750-4 |
Reference: | [10] Knox, M. L., Levy, R., McGovern, W. W., Shapiro, J.: Generalizations of complemented rings with applications to rings of functions.J. Algebra Appl. 8 (2009), 17-40. Zbl 1173.13002, MR 2191531, 10.1142/S0219498809003138 |
Reference: | [11] Lambek, J.: Lectures on Rings and Modules.Chelsea Publishing, New York (1976). Zbl 0365.16001, MR 0419493 |
Reference: | [12] Stenström, B.: Rings of Quotients: An Introduction to Methods of Ring Theory.Die Grundlehren der mathematischen Wissenschaften 217. Springer, Berlin (1975). Zbl 0296.16001, MR 0389953, 10.1007/978-3-642-66066-5 |
. |
Fulltext not available (moving wall 24 months)