Previous |  Up |  Next

Article

Title: On the signless Laplacian and normalized signless Laplacian spreads of graphs (English)
Author: Milovanović, Emina
Author: Bozkurt Altindağ, Serife B.
Author: Matejić, Marjan
Author: Milovanović, Igor
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 2
Year: 2023
Pages: 499-511
Summary lang: English
.
Category: math
.
Summary: Let $G=(V,E)$, $V=\{v_1,v_2,\ldots ,v_n\}$, be a simple connected graph with $n$ vertices, $m$ edges and a sequence of vertex degrees $d_1\geq d_2\geq \cdots \geq d_n$. Denote by $A$ and $D$ the adjacency matrix and diagonal vertex degree matrix of $G$, respectively. The signless Laplacian of $G$ is defined as $L^+=D+A$ and the normalized signless Laplacian matrix as $\mathcal {L}^+=D^{-1/2}L^+ D^{-1/2}$. The normalized signless Laplacian spreads of a connected nonbipartite graph $G$ are defined as $r(G)= \gamma _{2}^{+}/ \gamma _{n}^{+}$ and $l(G)=\gamma _{2}^{+}-\gamma _{n}^{+}$, where $\gamma _1^+ \ge \gamma _2^+\ge \cdots \ge \gamma _n^+ \ge 0$ are eigenvalues of $\mathcal {L}^+$. We establish sharp lower and upper bounds for the normalized signless Laplacian spreads of connected graphs. In addition, we present a better lower bound on the signless Laplacian spread. (English)
Keyword: Laplacian graph spectra
Keyword: bipartite graph
Keyword: spread of graph
MSC: 05C50
MSC: 15A18
idZBL: Zbl 07729520
idMR: MR4586907
DOI: 10.21136/CMJ.2023.0005-22
.
Date available: 2023-05-04T17:47:38Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151670
.
Reference: [1] Andrade, E., Dahl, G., Leal, L., Robbiano, M.: New bounds for the signless Laplacian spread.Linear Algebra Appl. 566 (2019), 98-120. Zbl 1410.05114, MR 3896162, 10.1016/j.laa.2018.12.019
Reference: [2] Andrade, E., Freitas, M. A. A. de, Robbiano, M., Rodríguez, J.: New lower bounds for the Randić spread.Linear Algebra Appl. 544 (2018), 254-272. Zbl 1388.05108, MR 3765785, 10.1016/j.laa.2017.07.037
Reference: [3] Biernacki, M., Pidek, H., Ryll-Nardzewski, C.: Sur une inéqualité entre des intégrales definies.Ann. Univ. Mariae Curie-Skłodowska, Sect. A 4 (1950), 1-4 French. Zbl 0040.31904, MR 0042474
Reference: [4] ndağ, Ş. B. Bozkurt Altı: Note on the sum of powers of normalized signless Laplacian eigenvalues of graphs.Math. Interdisc. Research 4 (2019), 171-182. 10.22052/mir.2019.208991.1180
Reference: [5] ndağ, Ş. B. Bozkurt Altı: Sum of powers of normalized signless Laplacian eigenvalues and Randić (normalized) incidence energy of graphs.Bull. Int. Math. Virtual Inst. 11 (2021), 135-146. Zbl 07540020, MR 4187056, 10.7251/BIMVI2101135A
Reference: [6] Bozkurt, Ş. B., Güngör, A. D., Gutman, I., Çevik, A. S.: Randić matrix and Randić energy.MATCH Commun. Math. Comput. Chem. 64 (2010), 239-250. Zbl 1265.05113, MR 2677585
Reference: [7] Butler, S. K.: Eigenvalues and Structures of Graphs: Ph.D. Thesis.University of California, San Diego (2008). MR 2711548
Reference: [8] Cavers, M., Fallat, S., Kirkland, S.: On the normalized Laplacian energy and general Randić index $R_{-1}$ of graphs.Linear Algebra Appl. 433 (2010), 172-190. Zbl 1217.05138, MR 2645076, 10.1016/j.laa.2010.02.002
Reference: [9] Cheng, B., Liu, B.: The normalized incidence energy of a graph.Linear Algebra Appl. 438 (2013), 4510-4519. Zbl 1282.05104, MR 3034547, 10.1016/j.laa.2013.01.003
Reference: [10] Chung, F. R. K.: Spectral Graph Theory.Regional Conference Series in Mathematics 92. AMS, Providence (1997). Zbl 0867.05046, MR 1421568, 10.1090/cbms/092
Reference: [11] Cirtoaje, V.: The best lower bound depended on two fixed variables for Jensen's inequality with ordered variables.J. Inequal. Appl. 2010 (2010), Article ID 128258, 12 pages. Zbl 1204.26031, MR 2749168, 10.1155/2010/128258
Reference: [12] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications.Pure and Applied Mathematics 87. Academic Press, New York (1980). MR 0572262
Reference: [13] Cvetković, D., Rowlinson, P., Simić, S. K.: Signless Laplacian of finite graphs.Linear Algebra Appl. 423 (2007), 155-171. Zbl 1113.05061, MR 2312332, 10.1016/j.laa.2007.01.009
Reference: [14] Cvetković, D., Simić, S. K.: Towards a spectral theory of graphs based on the signless Laplacian. II.Linear Algebra Appl. 432 (2010), 2257-2277. Zbl 1218.05089, MR 2599858, 10.1016/j.laa.2009.05.020
Reference: [15] Das, K. C., Güngör, A. D., Bozkurt, Ş. B.: On the normalized Laplacian eigenvalues of graphs.Ars Comb. 118 (2015), 143-154. Zbl 1349.05205, MR 3330443
Reference: [16] Gomes, H., Gutman, I., Martins, E. Andrade, Robbiano, M., Martín, B. San: On Randić spread.MATCH Commun. Math. Comput. Chem. 72 (2014), 249-266. Zbl 1464.05070, MR 3241719
Reference: [17] Gomes, H., Martins, E., Robbiano, M., Martín, B. San: Upper bounds for Randić spread.MATCH Commun. Math. Comput. Chem. 72 (2014), 267-278. Zbl 1464.05236, MR 3241720
Reference: [18] Gu, R., Huang, F., Li, X.: Randić incidence energy of graphs.Trans. Comb. 3 (2014), 1-9. Zbl 1463.05331, MR 3239628, 10.22108/TOC.2014.5573
Reference: [19] Gutman, I., Milovanović, E., Milovanović, I.: Bounds for Laplacian-type graph energies.Miskolc Math. Notes 16 (2015), 195-203. Zbl 1340.05164, MR 3384599, 10.18514/MMN.2015.1140
Reference: [20] Gutman, I., Trinajstić, N.: Graph theory and molecular orbitals: Total $\phi$-electron energy of alternant hydrocarbons.Chem. Phys. Lett. 17 (1972), 535-538. 10.1016/0009-2614(72)85099-1
Reference: [21] Liu, B., Huang, Y., Feng, J.: A note on the Randić spectral radius.MATCH Commun. Math. Comput. Chem. 68 (2012), 913-916. Zbl 1289.05133, MR 3052189
Reference: [22] Liu, M., Liu, B.: The signless Laplacian spread.Linear Algebra Appl. 432 (2010), 505-514. Zbl 1206.05064, MR 2577696, 10.1016/j.laa.2009.08.025
Reference: [23] Güngör, A. D. Maden, Çevik, A. S., Habibi, N.: New bounds for the spread of the signless Laplacian spectrum.Math. Inequal. Appl. 17 (2014), 283-294. Zbl 1408.05082, MR 3220994, 10.7153/mia-17-23
Reference: [24] Milovanović, I., Milovanović, E., Glogić, E.: On applications of Andrica-Badea and Nagy inequalities in spectral graph theory.Stud. Univ. Babeş-Bolyai, Math. 60 (2015), 603-609. Zbl 1389.05104, MR 3437422
Reference: [25] Mitrinović, D. S.: Analytic Inequalities.Die Grundlehren der mathematischen Wissenschaften 165. Springer, Berlin (1970). Zbl 0199.38101, MR 274686, 10.1007/978-3-642-99970-3
Reference: [26] Randić, M.: Characterization of molecular branching.J. Am. Chem. Soc. 97 (1975), 6609-6615. 10.1021/ja00856a001
Reference: [27] Shi, L.: Bounds on Randić indices.Discrete Math. 309 (2009), 5238-5241. Zbl 1179.05039, MR 2548924, 10.1016/j.disc.2009.03.036
Reference: [28] Zumstein, P.: Comparison of Spectral Methods Through the Adjacency Matrix and the Laplacian of a Graph: Diploma Thesis.ETH Zürich, Zürich (2005).
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo