Previous |  Up |  Next

Article

Title: Relative Auslander bijection in $n$-exangulated categories (English)
Author: He, Jian
Author: He, Jing
Author: Zhou, Panyue
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 2
Year: 2023
Pages: 525-552
Summary lang: English
.
Category: math
.
Summary: The aim of this article is to study the relative Auslander bijection in \hbox {$n$-exangulated} categories. More precisely, we introduce the notion of generalized Auslander-Reiten-Serre duality and exploit a bijection triangle, which involves the generalized Auslander-Reiten-Serre duality and the restricted Auslander bijection relative to the subfunctor. As an application, this result generalizes the work by Zhao in extriangulated categories. (English)
Keyword: $n$-exangulated category
Keyword: generalized Auslander-Reiten-Serre duality
Keyword: restricted Auslander bijection
MSC: 16G70
MSC: 18E10
MSC: 18G80
idZBL: Zbl 07729522
idMR: MR4586909
DOI: 10.21136/CMJ.2023.0127-22
.
Date available: 2023-05-04T17:48:54Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151672
.
Reference: [1] Auslander, M.: Functors and morphisms determined by objects.Representation Theory of Algebras Lecture Notes in Pure Applied Mathematics 37. Marcel Dekker, New York (1978), 1-244. Zbl 0383.16015, MR 0480688
Reference: [2] Auslander, M., Reiten, I.: Representation theory of Artin algebras. III: Almost split sequences.Commun. Algebra 3 (1975), 239-294. Zbl 0331.16027, MR 0379599, 10.1080/00927877508822046
Reference: [3] Auslander, M., Reiten, I.: Representation theory of Artin algebras. IV: Invariants given by almost split sequences.Commun. Algebra 5 (1977), 443-518. Zbl 0396.16007, MR 0439881, 10.1080/00927877708822180
Reference: [4] Chen, X.-W.: The Auslander bijections and universal extensions.Ark. Mat. 55 (2017), 41-59. Zbl 1388.16018, MR 3711141, 10.4310/ARKIV.2017.v55.n1.a2
Reference: [5] Dräxler, P., Reiten, I., Smalø, S. O., Solberg, Ø.: Exact categories and vector space categories.Trans. Am. Math. Soc. 351 (1999), 647-682. Zbl 0916.16002, MR 1608305, 10.1090/S0002-9947-99-02322-3
Reference: [6] Geiss, C., Keller, B., Oppermann, S.: $n$-angulated categories.J. Reine Angew. Math. 675 (2013), 101-120. Zbl 1271.18013, MR 3021448, 10.1515/CRELLE.2011.177
Reference: [7] He, J., He, J., Zhou, P.: Auslander-Reiten-Serre duality for $n$-exangulated categories.Available at https://arxiv.org/abs/2112.00981 (2021), 24 pages.
Reference: [8] He, J., He, J., Zhou, P.: Higher Auslander-Reiten sequences via morphisms determined by objects.Available at https://arxiv.org/abs/2111.06522 (2021), 28 pages. MR 4585887
Reference: [9] He, J., Hu, J., Zhang, D., Zhou, P.: On the existence of Auslander-Reiten $n$-exangles in $n$-exangulated categories.Ark. Mat. 60 (2022), 365-385. Zbl 7610639, MR 4500371, 10.4310/ARKIV.2022.v60.n2.a8
Reference: [10] He, J., Zhou, P.: $n$-exact categories arising from $n$-exangulated categories.Available at https://arxiv.org/abs/2109.12954 (2021), 16 pages.
Reference: [11] Herschend, M., Liu, Y., Nakaoka, H.: $n$-exangulated categories. I: Definitions and fundamental properties.J. Algebra 570 (2021), 531-586. Zbl 07290700, MR 4188310, 10.1016/j.jalgebra.2020.11.017
Reference: [12] Herschend, M., Liu, Y., Nakaoka, H.: $n$-exangulated categories. II: Constructions from $n$-cluster tilting subcategories.J. Algebra 594 (2022), 636-684. Zbl 07459388, MR 4355116, 10.1016/j.jalgebra.2021.11.042
Reference: [13] Hu, J., Zhang, D., Zhou, P.: Two new classes of $n$-exangulated categories.J. Algebra 568 (2021), 1-21. Zbl 1458.18006, MR 4166049, 10.1016/j.jalgebra.2020.09.041
Reference: [14] Iyama, O., Nakaoka, H., Palu, Y.: Auslander-Reiten theory in extriangulated categories.Available at https://arxiv.org/abs/1805.03776v2 (2019), 40 pages.
Reference: [15] Jasso, G.: $n$-abelian and $n$-exact categories.Math. Z. 283 (2016), 703-759. Zbl 1356.18005, MR 3519980, 10.1007/s00209-016-1619-8
Reference: [16] Jiao, P.: The generalized Auslander-Reiten duality on an exact category.J. Algebra Appl. 17 (2018), Article ID 1850227, 14 pages. Zbl 1407.16014, MR 3895199, 10.1142/S0219498818502274
Reference: [17] Jiao, P.: Auslander's defect formula and a commutative triangle in an exact category.Front. Math. China 15 (2020), 115-125. Zbl 1457.16014, MR 4074348, 10.1007/s11464-020-0814-4
Reference: [18] Liu, Y., Zhou, P.: Frobenius $n$-exangulated categories.J. Algebra 559 (2020), 161-183. Zbl 1448.18022, MR 4096714, 10.1016/j.jalgebra.2020.03.036
Reference: [19] Nakaoka, H., Palu, Y.: Extriangulated categories, Hovey twin cotorsion pairs and model structures.Cah. Topol. Géom. Différ. Catég. 60 (2019), 117-193. Zbl 1451.18021, MR 3931945
Reference: [20] Ringel, C. M.: The Auslander bijections: How morphisms are determined by modules.Bull. Math. Sci. 3 (2013), 409-484. Zbl 1405.16030, MR 3128038, 10.1007/s13373-013-0042-2
Reference: [21] Zhao, T.: Relative Auslander bijection in extriangulated categories.Available at www.researchgate.net/publication/367217942 (2021). MR 4586909
Reference: [22] Zhao, T., Tan, L., Huang, Z.: Almost split triangles and morphisms determined by objects in extriangulated categories.J. Algebra 559 (2020), 346-378. Zbl 1440.18024, MR 4097908, 10.1016/j.jalgebra.2020.04.021
Reference: [23] Zhao, T., Tan, L., Huang, Z.: A bijection triangle in extriangulated categories.J. Algebra 574 (2021), 117-153. Zbl 1459.18007, MR 4210995, 10.1016/j.jalgebra.2020.12.043
Reference: [24] Zheng, Q., Wei, J.: $(n+2)$-angulated quotient categories.Algebra Colloq. 26 (2019), 689-720. Zbl 1427.18006, MR 4032973, 10.1142/S1005386719000506
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo