Previous |  Up |  Next

Article

Title: Commutative graded-$S$-coherent rings (English)
Author: Assarrar, Anass
Author: Mahdou, Najib
Author: Tekir, Ünsal
Author: Koç, Suat
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 2
Year: 2023
Pages: 553-564
Summary lang: English
.
Category: math
.
Summary: Recently, motivated by Anderson, Dumitrescu's $S$-finiteness, D. Bennis, M. El Hajoui (2018) introduced the notion of $S$-coherent rings, which is the $S$-version of coherent rings. Let $R= \bigoplus _{\alpha \in G} R_{\alpha }$ be a commutative ring with unity graded by an arbitrary commutative monoid $G$, and $S$ a multiplicatively closed subset of nonzero homogeneous elements of $R$. We define $R$ to be graded-$S$-coherent ring if every finitely generated homogeneous ideal of $R$ is $S$-finitely presented. The purpose of this paper is to give the graded version of several results proved in D. Bennis, M. El Hajoui (2018). We show the nontriviality of our generalization by giving an example of a graded-$S$-coherent ring which is not $S$-coherent and as a special case of our study, we give the graded version of the Chase's characterization of $S$-coherent rings. (English)
Keyword: $S$-finite
Keyword: graded-$S$-coherent module
Keyword: graded-$S$-coherent ring
MSC: 13A02
MSC: 13A15
MSC: 13D03
MSC: 16W50
idZBL: Zbl 07729523
idMR: MR4586910
DOI: 10.21136/CMJ.2023.0130-22
.
Date available: 2023-05-04T17:49:28Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151673
.
Reference: [1] Anderson, D. D., Anderson, D. F., Chang, G. W.: Graded-valuation domains.Commun. Algebra 45 (2017), 4018-4029. Zbl 1390.13002, MR 3627646, 10.1080/00927872.2016.1254784
Reference: [2] Anderson, D. F., Chang, G. W., Zafrullah, M.: Graded Prüfer domains.Commun. Algebra 46 (2018), 792-809. Zbl 1397.13001, MR 3764897, 10.1080/00927872.2017.1327595
Reference: [3] Anderson, D. D., Dumitrescu, T.: $S$-Noetherian rings.Commun. Algebra 30 (2002), 4407-4416. Zbl 1060.13007, MR 1936480, 10.1081/AGB-120013328
Reference: [4] Assarrar, A., Mahdou, N., Tekir, Ü., Koç, S.: On graded coherent-like properties in trivial ring extensions.Boll. Unione Mat. Ital. 15 (2022), 437-449. Zbl 1497.13002, MR 4461706, 10.1007/s40574-021-00312-6
Reference: [5] Bakkari, C., Mahdou, N., Riffi, A.: Commutative graded-coherent rings.Indian J. Math. 61 (2019), 421-440. Zbl 1451.13003, MR 3971513
Reference: [6] Bakkari, C., Mahdou, N., Riffi, A.: Uniformly graded-coherent rings.Quaest. Math. 44 (2021), 1371-1391. Zbl 1484.13003, MR 4345229, 10.2989/16073606.2020.1799106
Reference: [7] Bennis, D., Hajoui, M. El: On $S$-coherence.J. Korean Math. Soc. 55 (2018), 1499-1512. Zbl 1405.13035, MR 3883493, 10.4134/JKMS.j170797
Reference: [8] Bourbaki, N.: Éléments de mathématique. Algèbre. Chapitres 1 à 3.Springer, Berlin (2007), French. Zbl 1111.00001, MR 0274237, 10.1007/978-3-540-33850-5
Reference: [9] Chang, G. W., Oh, D. Y.: Discrete valuation overrings of a graded Noetherian domain.J. Commut. Algebra 10 (2018), 45-61. Zbl 1400.13007, MR 3804846, 10.1216/JCA-2018-10-1-45
Reference: [10] Chase, S. U.: Direct products of modules.Trans. Am. Math. Soc. 97 (1960), 457-473. Zbl 0100.26602, MR 0120260, 10.1090/S0002-9947-1960-0120260-3
Reference: [11] Gilmer, R.: Commutative Semigroup Rings.Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1984). Zbl 0566.20050, MR 0741678
Reference: [12] Glaz, S.: Commutative Coherent Rings.Lecture Notes in Mathematics 1371. Springer, Berlin (1989). Zbl 0745.13004, MR 0999133, 10.1007/BFb0084570
Reference: [13] Huckaba, J. A.: Commutative Rings with Zero Divisors.Monographs and Textbooks in Pure and Applied Mathematics 117. Marcel Dekker, New York (1988). Zbl 0637.13001, MR 0938741
Reference: [14] Kim, D. K., Lim, J. W.: When are graded rings graded $S$-Noetherian rings.Mathematics 8 (2020), Article ID 1532, 11 pages. 10.3390/math8091532
Reference: [15] Năstăsescu, C., Oystaeyen, F. Van: Methods of Graded Rings.Lecture Notes in Mathematics 1836. Springer, Berlin (2004). Zbl 1043.16017, MR 2046303, 10.1007/b94904
Reference: [16] Rush, D. E.: Noetherian properties in monoid rings.J. Pure Appl. Algebra 185 (2003), 259-278. Zbl 1084.13007, MR 2006430, 10.1016/S0022-4049(03)00103-8
Reference: [17] Soublin, J.-P.: Anneaux et modules cohérents.J. Algebra 15 (1970), 455-472 French. Zbl 0198.35803, MR 0260799, 10.1016/0021-8693(70)90050-5
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo