Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
higher divisor function; circle method; prime
Summary:
Let $l\geqslant 2$ be an integer. Recently, Hu and Lü offered the asymptotic formula for the sum of the higher divisor function $$ \sum _{1\leqslant n_{1},n_{2},\ldots ,n_{l}\leqslant x^{1/2}}\tau _{k}(n_{1}^{2}+n_{2}^{2}+\cdots +n_{l}^{2}), $$ where $\tau _{k}(n)$ represents the $k$th divisor function. We give the Goldbach-type analogy of their result. That is to say, we investigate the asymptotic behavior of the sum $$ \sum _{1\leqslant p_{1},p_{2},\ldots ,p_{l}\leqslant x}\tau _{k}(p_{1}+p_{2}+\cdots +p_{l}), $$ where $p_1,p_2,\dots ,p_l$ are prime variables.
References:
[1] Bellman, R.: Ramanujan sums and the average value of arithmetic functions. Duke Math. J. 17 (1950), 159-168. DOI 10.1215/S0012-7094-50-01717-0 | MR 0035312 | Zbl 0037.31202
[2] Calderón, C., Velasco, M. J. de: On divisors of a quadratic form. Bol. Soc. Bras. Mat., Nova Sér. 31 (2000), 81-91. DOI 10.1007/BF01377596 | MR 1754956 | Zbl 1031.11057
[3] Chace, C. E.: The divisor problem for arithmetic progressions with small modulus. Acta Arith. 61 (1992), 35-50. DOI 10.4064/aa-61-1-35-50 | MR 1153920 | Zbl 0726.11056
[4] Chace, C. E.: Writing integers as sums of products. Trans. Am. Math. Soc. 345 (1994), 367-379. DOI 10.1090/S0002-9947-1994-1257641-3 | MR 1257641 | Zbl 0811.11061
[5] Gafurov, N.: On the sum of the number of divisors of a quadratic form. Dokl. Akad. Nauk Tadzh. SSR 28 (1985), 371-375 Russian. MR 0819343 | Zbl 0586.10023
[6] Gafurov, N.: On the number of divisors of a quadratic form. Proc. Steklov Inst. Math. 200 (1993), 137-148. MR 1143362 | Zbl 0790.11073
[7] Guo, R., Zhai, W.: Some problems about the ternary quadratic form $m_1^2+m_2^2+m_3^2$. Acta Arith. 156 (2012), 101-121. DOI 10.4064/aa156-2-1 | MR 2997561 | Zbl 1270.11099
[8] Hooley, C.: On the representation of a number as the sum of a square and a product. Math. Z. 69 (1958), 211-227. DOI 10.1007/BF01187402 | MR 0096624 | Zbl 0081.03904
[9] Hooley, C.: On the number of divisors of a quadratic polynomials. Acta Math. 110 (1963), 97-114. DOI 10.1007/BF02391856 | MR 0153648 | Zbl 0116.03802
[10] Hu, G., Lü, G.: Sums of higher divisor functions. J. Number Theory 220 (2021), 61-74. DOI 10.1016/j.jnt.2020.08.009 | MR 4177535 | Zbl 1466.11065
[11] Ingham, A. E.: Some asymptotic formulae in the theory of numbers. J. Lond. Math. Soc. 2 (1927), 202-208 \99999JFM99999 53.0157.01. DOI 10.1112/jlms/s1-2.3.202 | MR 1574426
[12] Montgomery, H. L., Vaughan, R. C.: The exceptional set in Goldbach's problem. Acta Arith. 27 (1975), 353-370. DOI 10.4064/aa-27-1-353-370 | MR 0374063 | Zbl 0301.10043
[13] Nathanson, M. B.: Additive Number Theory: The Classical Bases. Graduate Texts in Mathematics 164. Springer, New York (1996). DOI 10.1007/978-1-4757-3845-2 | MR 1395371 | Zbl 0859.11002
[14] Shiu, P.: A Brun-Titchmarsh theorem for multiplicative functions. J. Reine Angew. Math. 313 (1980), 161-170. DOI 10.1515/crll.1980.313.161 | MR 0552470 | Zbl 0412.10030
[15] Sun, Q., Zhang, D.: Sums of the triple divisor function over values of a ternary quadratic form. J. Number Theory 168 (2016), 215-246. DOI 10.1016/j.jnt.2016.04.010 | MR 3515816 | Zbl 1396.11117
[16] Zhao, L.: The sum of divisors of a quadratic form. Acta Arith. 163 (2014), 161-177. DOI 10.4064/aa163-2-6 | MR 3200169 | Zbl 1346.11056
[17] Zhou, G.-L., Ding, Y.: Sums of the higher divisor function of diagonal homogeneous forms. Ramanujan J. 59 (2022), 933-945. DOI 10.1007/s11139-022-00579-z | MR 4496536 | Zbl 1498.11200
Partner of
EuDML logo