Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
divisor function; Piatetski-Shapiro sequence; exponential sum
Summary:
Let $[x]$ be an integer part of $x$ and $d(n)$ be the number of positive divisor of $n$. Inspired by some results of M. Jutila (1987), we prove that for $1<c<\frac 65$, $$ \sum _{n\leq x} d([n^c])= cx\log x +(2\gamma -c)x+O\Bigl (\frac {x}{\log x}\Bigr ), $$ where $\gamma $ is the Euler constant and $[n^c]$ is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.
References:
[1] Arkhipov, G. I., Chubarikov, V. N.: On the distribution of prime numbers in a sequence of the form $[n^c]$. Mosc. Univ. Math. Bull. 54 (1999), 25-35 translation from Vestn. Mosk. Univ., Ser. I 1999 1999 25-35. MR 1735145 | Zbl 0983.11055
[2] Arkhipov, G. I., Soliba, K. M., Chubarikov, V. N.: On the sum of values of a multidimensional divisor function on a sequence of type $[n^c]$. Mosc. Univ. Math. Bull. 54 (1999), 28-36 translation from Vestn. Mosk. Univ., Ser. I 1999 1999 28-35. MR 1706007 | Zbl 0957.11040
[3] Graham, S. W., Kolesnik, G.: Van der Corput's Method of Exponential Sums. London Mathematical Society Lecture Note Series 126. Cambridge University Press, Cambridge (1991). DOI 10.1017/CBO9780511661976 | MR 1145488 | Zbl 0713.11001
[4] Heath-Brown, D. R.: The Pjateckii-Šapiro prime number theorem. J. Number Theory 16 (1983), 242-266. DOI 10.1016/0022-314X(83)90044-6 | MR 0698168 | Zbl 0513.10042
[5] Jutila, M.: Lectures on a Method in the Theory of Exponential Sums. Tata Institute Lectures on Mathematics and Physics 80. Springer, Berlin (1987). MR 0910497 | Zbl 0671.10031
[6] Kolesnik, G. A.: An improvement of the remainder term in the divisor problem. Math. Notes 6 (1969), 784-791 translation from Mat. Zametki 6 1969 545-554. DOI 10.1007/BF01101405 | MR 0257004 | Zbl 0233.10031
[7] Kolesnik, G. A.: Primes of the form $[n^c]$. Pac. J. Math. 118 (1985), 437-447. DOI 10.2140/PJM.1985.118.437 | MR 0789183 | Zbl 0571.10037
[8] Liu, H. Q., Rivat, J.: On the Pjateckii-Šapiro prime number theorem. Bull. Lond. Math. Soc. 24 (1992), 143-147. DOI 10.1112/BLMS/24.2.143 | MR 1148674 | Zbl 0772.11032
[9] Lü, G. S., Zhai, W. G.: The sum of multidimensional divisor functions on a special sequence. Adv. Math., Beijing 32 (2003), 660-664 Chinese. MR 2058014 | Zbl 1481.11090
[10] Piatetski-Shapiro, I. I.: On the distribution of the prime numbers in sequences of the form $[f(n)]$. Mat. Sb., N. Ser. 33 (1953), 559-566 Russian. MR 0059302 | Zbl 0053.02702
[11] Rivat, J., Sargos, P.: Nombres premiers de la forme $[n^c]$. Can. J. Math. 53 (2001), 414-433 French. DOI 10.4153/CJM-2001-017-0 | MR 1820915 | Zbl 0970.11035
[12] Rivat, J., Wu, J.: Prime numbers of the form $[n^c]$. Glasg. Math. J. 43 (2001), 237-254. DOI 10.1017/S0017089501020080 | MR 1838628 | Zbl 0987.11052
[13] Vaaler, J. D.: Some extremal functions in Fourier analysis. Bull. Am. Math. Soc., New Ser. 12 (1985), 183-216. DOI 10.1090/S0273-0979-1985-15349-2 | MR 0776471 | Zbl 0575.42003
Partner of
EuDML logo