Previous |  Up |  Next

Article

Keywords:
Bhargava ring; localization; (locally) essential domain; locally free module; (faithfully) flat module; Krull dimension
Summary:
Let $D$ be an integral domain with the quotient field $K$, $X$ an indeterminate over $K$ and $x$ an element of $D$. The Bhargava ring over $D$ at $x$ is defined to be $\mathbb {B}_x(D):=\{f\in \nobreak K[X]\colon \text {for all}\ a\in D,\ f(xX+a)\in D[X]\}$. In fact, $\mathbb {B}_x(D)$ is a subring of the ring of integer-valued polynomials over $D$. In this paper, we aim to investigate the behavior of $\mathbb {B}_x(D)$ under localization. In particular, we prove that $\mathbb {B}_x(D)$ behaves well under localization at prime ideals of $D$, when $D$ is a locally finite intersection of localizations. We also attempt a classification of integral domains $D$ such that $\mathbb {B}_x(D)$ is locally free, or at least faithfully flat (or flat) as a $D$-module (or $D[X]$-module, respectively). Particularly, we are interested in domains that are (locally) essential. A particular attention is devoted to provide conditions under which $\mathbb {B}_x(D)$ is trivial when dealing with essential domains. Finally, we calculate the Krull dimension of Bhargava rings over MZ-Jaffard domains. Interesting results are established with illustrating examples.
References:
[1] Alrasasi, I., Izelgue, L.: On the prime ideal structure of Bhargava rings. Commun. Algebra 38 (2010), 1385-1400. DOI 10.1080/00927870902922968 | MR 2656583 | Zbl 1198.13019
[2] Al-Rasasi, I., Izelgue, L.: Bhargava rings over subsets. Homological and Combinatorial Methods in Algebra Springer Proceedings in Mathematics & Statistics 228. Springer, Cham (2018), 9-26. DOI 10.1007/978-3-319-74195-6_2 | MR 3778007 | Zbl 1402.13019
[3] Anderson, D. D., Anderson, D. F.: Generalized GCD domains. Comment. Math. Univ. St. Pauli 28 (1980), 215-221. MR 0578675 | Zbl 0434.13001
[4] Anderson, D. D., Anderson, D. F., Zafrullah, M.: Rings between $D[X]$ and $K[X]$. Houston J. Math. 17 (1991), 109-129. MR 1107192 | Zbl 0736.13015
[5] Bhargava, M., Cahen, P.-J., Yeramian, J.: Finite generation properties for various rings of integer-valued polynomials. J. Algebra 322 (2009), 1129-1150. DOI 10.1016/j.jalgebra.2009.04.017 | MR 2537676 | Zbl 1177.13051
[6] Bourbaki, N.: Éléments de Mathématique. Algèbre Commutative. Chapitres 1 à 4. Masson, Paris (1985), French. DOI 10.1007/978-3-540-33976-2 | MR 782296 | Zbl 1103.13001
[7] Brewer, J. W., Heinzer, W. J.: Associated primes of principal ideals. Duke Math. J. 41 (1974), 1-7. DOI 10.1215/S0012-7094-74-04101-5 | MR 0335486 | Zbl 0284.13001
[8] Cahen, P.-J., Chabert, J.-L.: Integer-Valued Polynomials. Mathematical Surveys Monographs 48. American Mathematical Society, Providence (1997). DOI 10.1090/surv/048 | MR 1421321 | Zbl 0884.13010
[9] El-Baghdadi, S.: Semistar GCD domains. Commun. Algebra 38 (2010), 3029-3044. DOI 10.1080/00927870903114961 | MR 2730293 | Zbl 1203.13002
[10] Elliott, J.: Some new approaches to integer-valued polynomial rings. Commutative Algebra and Its Applications Walter de Gruyter, Berlin (2009), 223-237. DOI 10.1515/9783110213188.223 | MR 2606288 | Zbl 1177.13053
[11] Elliott, J.: Integer-valued polynomial rings, $t$-closure, and associated primes. Commun. Algebra 39 (2011), 4128-4147. DOI 10.1080/00927872.2010.519366 | MR 2855117 | Zbl 1247.13022
[12] Fontana, M., Kabbaj, S.: Essential domains and two conjectures in dimension theory. Proc. Am. Math. Soc. 132 (2004), 2529-2535. DOI 10.1090/S0002-9939-04-07502-1 | MR 2054776 | Zbl 1059.13008
[13] Gilmer, R.: Multiplicative Ideal Theory. Queen's Papers in Pure and Applied Mathematics 90. Queen's University, Kingston (1992). MR 1204267 | Zbl 0804.13001
[14] R. W. Gilmer, Jr.: Overrings of Prüfer domains. J. Algebra 4 (1966), 331-340. DOI 10.1016/0021-8693(66)90025-1 | MR 0202749 | Zbl 0146.26205
[15] Heinzer, W.: An essential integral domain with a non-essential localization. Can. J. Math. 33 (1981), 400-403. DOI 10.4153/CJM-1981-034-8 | MR 0617630 | Zbl 0411.13013
[16] Heinzer, W., Roitman, M.: Well-centered overrings of an integral domain. J. Algebra 272 (2004), 435-455. DOI 10.1016/S0021-8693(03)00462-9 | MR 2028066 | Zbl 1040.13002
[17] Heubo-Kwegna, O. A., Olberding, B., Reinhart, A.: Group-theoretic and topological invariants of completely integrally closed Prüfer domains. J. Pure Appl. Algebra 220 (2016), 3927-3947. DOI 10.1016/j.jpaa.2016.05.021 | MR 3517563 | Zbl 1353.13020
[18] Hutchins, H. C.: Examples of Commutative Rings. Polygonal Publishing House, Washington (1981). MR 0638720 | Zbl 0492.13001
[19] Izelgue, L., Mimouni, A. A., Tamoussit, A.: On the module structure of the integer-valued polynomial rings. Bull. Malays. Math. Sci. Soc. (2) 43 (2020), 2687-2699. DOI 10.1007/s40840-019-00826-5 | MR 4089663 | Zbl 1437.13030
[20] Kim, H., Tamoussit, A.: Integral domains issued from associated primes. Commun. Algebra 50 (2022), 538-555. DOI 10.1080/00927872.2021.1960991 | MR 4375523
[21] Mott, J. L., Zafrullah, M.: On Prüfer $v$-multiplication domains. Manuscr. Math. 35 (1981), 1-26. DOI 10.1007/BF01168446 | MR 0627923 | Zbl 0477.13007
[22] Park, M. H., Tartarone, F.: Bhargava rings that are Prüfer $v$-multiplication domains. J. Algebra Appl. 19 (2020), Article ID 2050098, 14 pages. DOI 10.1142/S021949882050098X | MR 4114450 | Zbl 1445.13020
[23] E. M. Pirtle, Jr.: Integral domains which are almost Krull. J. Sci. Hiroshima Univ., Ser. A-I 32 (1968), 441-447. DOI 10.32917/hmj/1206138662 | MR 0244221 | Zbl 0181.04903
[24] E. M. Pirtle, Jr.: Families of valuations and semigroups of fractionary ideal classes. Trans. Am. Math. Soc. 144 (1969), 427-439. DOI 10.1090/S0002-9947-1969-0249416-4 | MR 0249416 | Zbl 0197.03203
[25] Tamoussit, A.: A note on the Krull dimension of rings between $D[X]$ and $ Int(D)$. Boll. Unione Mat. Ital. 14 (2021), 513-519. DOI 10.1007/s40574-021-00281-w | MR 4290350 | Zbl 1469.13025
[26] Tartarone, F.: On the Krull dimension of $ Int(D)$ when $D$ is a pullback. Commutative Ring Theory Lecture Notes in Pure Applied Mathematics 185. Marcel Dekker, New York (1997), 457-470. MR 1422501 | Zbl 0899.13024
[27] Yeramian, J.: Anneaux de Bhargava: Thèse de Doctorat. Université Paul Cézanne, Marseille (2004), French. MR 2102166
[28] Yeramian, J.: Anneaux de Bhargava. Commun. Algebra 32 (2004), 3043-3069 French. DOI 10.1081/AGB-120039278 | MR 2102166 | Zbl 1061.13011
[29] Yeramian, J.: Prime ideals of Bhargava domains. J. Pure Appl. Algebra 213 (2009), 1013-1025. DOI 10.1016/j.jpaa.2008.11.008 | MR 2498793 | Zbl 1162.13007
[30] Zafrullah, M.: The $D+XD_S[X]$ construction from GCD-domains. J. Pure Appl. Algebra 50 (1988), 93-107. DOI 10.1016/0022-4049(88)90006-0 | MR 0931909 | Zbl 0656.13020
Partner of
EuDML logo