Previous |  Up |  Next

Article

Title: On Bhargava rings (English)
Author: Chems-Eddin, Mohamed Mahmoud
Author: Ouzzaouit, Omar
Author: Tamoussit, Ali
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 2
Year: 2023
Pages: 181-195
Summary lang: English
.
Category: math
.
Summary: Let $D$ be an integral domain with the quotient field $K$, $X$ an indeterminate over $K$ and $x$ an element of $D$. The Bhargava ring over $D$ at $x$ is defined to be $\mathbb {B}_x(D):=\{f\in \nobreak K[X]\colon \text {for all}\ a\in D,\ f(xX+a)\in D[X]\}$. In fact, $\mathbb {B}_x(D)$ is a subring of the ring of integer-valued polynomials over $D$. In this paper, we aim to investigate the behavior of $\mathbb {B}_x(D)$ under localization. In particular, we prove that $\mathbb {B}_x(D)$ behaves well under localization at prime ideals of $D$, when $D$ is a locally finite intersection of localizations. We also attempt a classification of integral domains $D$ such that $\mathbb {B}_x(D)$ is locally free, or at least faithfully flat (or flat) as a $D$-module (or $D[X]$-module, respectively). Particularly, we are interested in domains that are (locally) essential. A particular attention is devoted to provide conditions under which $\mathbb {B}_x(D)$ is trivial when dealing with essential domains. Finally, we calculate the Krull dimension of Bhargava rings over MZ-Jaffard domains. Interesting results are established with illustrating examples. (English)
Keyword: Bhargava ring
Keyword: localization
Keyword: (locally) essential domain
Keyword: locally free module
Keyword: (faithfully) flat module
Keyword: Krull dimension
MSC: 13B30
MSC: 13C11
MSC: 13C15
MSC: 13F05
MSC: 13F20
idZBL: Zbl 07729571
idMR: MR4585575
DOI: 10.21136/MB.2022.0137-21
.
Date available: 2023-05-04T17:56:45Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151683
.
Reference: [1] Alrasasi, I., Izelgue, L.: On the prime ideal structure of Bhargava rings.Commun. Algebra 38 (2010), 1385-1400. Zbl 1198.13019, MR 2656583, 10.1080/00927870902922968
Reference: [2] Al-Rasasi, I., Izelgue, L.: Bhargava rings over subsets.Homological and Combinatorial Methods in Algebra Springer Proceedings in Mathematics & Statistics 228. Springer, Cham (2018), 9-26. Zbl 1402.13019, MR 3778007, 10.1007/978-3-319-74195-6_2
Reference: [3] Anderson, D. D., Anderson, D. F.: Generalized GCD domains.Comment. Math. Univ. St. Pauli 28 (1980), 215-221. Zbl 0434.13001, MR 0578675
Reference: [4] Anderson, D. D., Anderson, D. F., Zafrullah, M.: Rings between $D[X]$ and $K[X]$.Houston J. Math. 17 (1991), 109-129. Zbl 0736.13015, MR 1107192
Reference: [5] Bhargava, M., Cahen, P.-J., Yeramian, J.: Finite generation properties for various rings of integer-valued polynomials.J. Algebra 322 (2009), 1129-1150. Zbl 1177.13051, MR 2537676, 10.1016/j.jalgebra.2009.04.017
Reference: [6] Bourbaki, N.: Éléments de Mathématique. Algèbre Commutative. Chapitres 1 à 4.Masson, Paris (1985), French. Zbl 1103.13001, MR 782296, 10.1007/978-3-540-33976-2
Reference: [7] Brewer, J. W., Heinzer, W. J.: Associated primes of principal ideals.Duke Math. J. 41 (1974), 1-7. Zbl 0284.13001, MR 0335486, 10.1215/S0012-7094-74-04101-5
Reference: [8] Cahen, P.-J., Chabert, J.-L.: Integer-Valued Polynomials.Mathematical Surveys Monographs 48. American Mathematical Society, Providence (1997). Zbl 0884.13010, MR 1421321, 10.1090/surv/048
Reference: [9] El-Baghdadi, S.: Semistar GCD domains.Commun. Algebra 38 (2010), 3029-3044. Zbl 1203.13002, MR 2730293, 10.1080/00927870903114961
Reference: [10] Elliott, J.: Some new approaches to integer-valued polynomial rings.Commutative Algebra and Its Applications Walter de Gruyter, Berlin (2009), 223-237. Zbl 1177.13053, MR 2606288, 10.1515/9783110213188.223
Reference: [11] Elliott, J.: Integer-valued polynomial rings, $t$-closure, and associated primes.Commun. Algebra 39 (2011), 4128-4147. Zbl 1247.13022, MR 2855117, 10.1080/00927872.2010.519366
Reference: [12] Fontana, M., Kabbaj, S.: Essential domains and two conjectures in dimension theory.Proc. Am. Math. Soc. 132 (2004), 2529-2535. Zbl 1059.13008, MR 2054776, 10.1090/S0002-9939-04-07502-1
Reference: [13] Gilmer, R.: Multiplicative Ideal Theory.Queen's Papers in Pure and Applied Mathematics 90. Queen's University, Kingston (1992). Zbl 0804.13001, MR 1204267
Reference: [14] R. W. Gilmer, Jr.: Overrings of Prüfer domains.J. Algebra 4 (1966), 331-340. Zbl 0146.26205, MR 0202749, 10.1016/0021-8693(66)90025-1
Reference: [15] Heinzer, W.: An essential integral domain with a non-essential localization.Can. J. Math. 33 (1981), 400-403. Zbl 0411.13013, MR 0617630, 10.4153/CJM-1981-034-8
Reference: [16] Heinzer, W., Roitman, M.: Well-centered overrings of an integral domain.J. Algebra 272 (2004), 435-455. Zbl 1040.13002, MR 2028066, 10.1016/S0021-8693(03)00462-9
Reference: [17] Heubo-Kwegna, O. A., Olberding, B., Reinhart, A.: Group-theoretic and topological invariants of completely integrally closed Prüfer domains.J. Pure Appl. Algebra 220 (2016), 3927-3947. Zbl 1353.13020, MR 3517563, 10.1016/j.jpaa.2016.05.021
Reference: [18] Hutchins, H. C.: Examples of Commutative Rings.Polygonal Publishing House, Washington (1981). Zbl 0492.13001, MR 0638720
Reference: [19] Izelgue, L., Mimouni, A. A., Tamoussit, A.: On the module structure of the integer-valued polynomial rings.Bull. Malays. Math. Sci. Soc. (2) 43 (2020), 2687-2699. Zbl 1437.13030, MR 4089663, 10.1007/s40840-019-00826-5
Reference: [20] Kim, H., Tamoussit, A.: Integral domains issued from associated primes.Commun. Algebra 50 (2022), 538-555. MR 4375523, 10.1080/00927872.2021.1960991
Reference: [21] Mott, J. L., Zafrullah, M.: On Prüfer $v$-multiplication domains.Manuscr. Math. 35 (1981), 1-26. Zbl 0477.13007, MR 0627923, 10.1007/BF01168446
Reference: [22] Park, M. H., Tartarone, F.: Bhargava rings that are Prüfer $v$-multiplication domains.J. Algebra Appl. 19 (2020), Article ID 2050098, 14 pages. Zbl 1445.13020, MR 4114450, 10.1142/S021949882050098X
Reference: [23] E. M. Pirtle, Jr.: Integral domains which are almost Krull.J. Sci. Hiroshima Univ., Ser. A-I 32 (1968), 441-447. Zbl 0181.04903, MR 0244221, 10.32917/hmj/1206138662
Reference: [24] E. M. Pirtle, Jr.: Families of valuations and semigroups of fractionary ideal classes.Trans. Am. Math. Soc. 144 (1969), 427-439. Zbl 0197.03203, MR 0249416, 10.1090/S0002-9947-1969-0249416-4
Reference: [25] Tamoussit, A.: A note on the Krull dimension of rings between $D[X]$ and $ Int(D)$.Boll. Unione Mat. Ital. 14 (2021), 513-519. Zbl 1469.13025, MR 4290350, 10.1007/s40574-021-00281-w
Reference: [26] Tartarone, F.: On the Krull dimension of $ Int(D)$ when $D$ is a pullback.Commutative Ring Theory Lecture Notes in Pure Applied Mathematics 185. Marcel Dekker, New York (1997), 457-470. Zbl 0899.13024, MR 1422501
Reference: [27] Yeramian, J.: Anneaux de Bhargava: Thèse de Doctorat.Université Paul Cézanne, Marseille (2004), French. MR 2102166
Reference: [28] Yeramian, J.: Anneaux de Bhargava.Commun. Algebra 32 (2004), 3043-3069 French. Zbl 1061.13011, MR 2102166, 10.1081/AGB-120039278
Reference: [29] Yeramian, J.: Prime ideals of Bhargava domains.J. Pure Appl. Algebra 213 (2009), 1013-1025. Zbl 1162.13007, MR 2498793, 10.1016/j.jpaa.2008.11.008
Reference: [30] Zafrullah, M.: The $D+XD_S[X]$ construction from GCD-domains.J. Pure Appl. Algebra 50 (1988), 93-107. Zbl 0656.13020, MR 0931909, 10.1016/0022-4049(88)90006-0
.

Files

Files Size Format View
MathBohem_148-2023-2_3.pdf 283.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo