Previous |  Up |  Next

Article

Title: Infinite probabilistic secret sharing (English)
Author: Csirmaz, Laszlo
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 59
Issue: 2
Year: 2023
Pages: 179-197
Summary lang: English
.
Category: math
.
Summary: A probabilistic secret sharing scheme is a joint probability distribution of the shares and the secret together with a collection of secret recovery functions. The study of schemes using arbitrary probability spaces and unbounded number of participants allows us to investigate their abstract properties, to connect the topic to other branches of mathematics, and to discover new design paradigms. A scheme is perfect if unqualified subsets have no information on the secret, that is, their total share is independent of the secret. By relaxing this security requirement, three other scheme types are defined. Our first result is that every (infinite) access structure can be realized by a perfect scheme where the recovery functions are non-measurable. The construction is based on a paradoxical pair of independent random variables which determine each other. Restricting the recovery functions to be measurable ones, we give a complete characterization of access structures realizable by each type of the schemes. In addition, either a vector-space or a Hilbert-space based scheme is constructed realizing the access structure. While the former one uses the traditional uniform distributions, the latter one uses Gaussian distributions, leading to a new design paradigm. (English)
Keyword: secret sharing
Keyword: abstract probability space
Keyword: Sierpinski topology
Keyword: product measure
Keyword: span program
Keyword: Hilbert space program
MSC: 46C99
MSC: 54D10
MSC: 60B05
MSC: 94A62
idMR: MR4600373
DOI: 10.14736/kyb-2023-2-0179
.
Date available: 2023-06-19T09:00:30Z
Last updated: 2023-08-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151690
.
Reference: [1] Azema, J., Yor, M., Meyer, F., Rue, R. de la: Espaces de Lebesgue..In: Séminaire de Probabilités XXVII, volume 1557 of Lecture Notes in Mathematics, pages Springer Berlin - Heidelberg 1993, pp. 15-21. MR 1308547,
Reference: [2] Beimel, A.: Secret-sharing schemes: A survey..In: IWCC (Y.-M. Chee, Z. Guo, S. Ling, F. Shao, Y. Tang, H. Wang, and Ch. Xing, eds.), volume 6639 of Lecture Notes in Computer Science, Springer 2011, pp 11-46. MR 2834691
Reference: [3] Blakley, G. R., Swanson, L.: Infinite structures in information theory..In: CRYPTO 1982, pp. 39-50.
Reference: [4] Chang, J. T., Pollard, D. D.: Conditioning as disintegration..Statistica Neerlandica 51 (1997), 3, 287-317. MR 1484954,
Reference: [5] Chor, B., Kushilevitz, E.: Secret sharing over infinite domain..J. Cryptology 6 (1993), 2, 97-86. MR 1229234,
Reference: [6] Dibert, A.: Generalized Secret Sharing..Master's Thesis, Central European University, Budapest 2011.
Reference: [7] Dibert, A., Csirmaz, I.: Infinite secret sharing - Exmples..J. Math. Cryptology 8 (2014), 2, 141-168. MR 3213579,
Reference: [8] Eggleston, H. G.: Two measure properties of cartesian product sets..Quater. J. Math. Oxford 5 (1954), 108-115. MR 0064850,
Reference: [9] Fremlin, D. H.: Measure Theory, Volume 2..Torres Fremlin, Colchester 2003. MR 2462280
Reference: [10] Haezendonck, J.: Abstract Lebesgue-Rokhlin spaces..Bull. Soc. Math. Belgique 25 (1973), 243-258. MR 0335733
Reference: [11] Janson, S.: Gaussian Hilbert Spaces..Cambridge Tracts in Mathematics. Cambridge University Press, 1997. MR 1474726
Reference: [12] Kallenberg, O.: Foundations of Modern Probability..Probability and Its Applications Series. Springer, 2010. Zbl 0996.60001, MR 1464694
Reference: [13] Karchmer, M., Wigderson, A.: On span programs..In: Structure in Complexity Theory Conference 1993, pp. 102-111. MR 1310791
Reference: [14] Makar, B. H.: Transfinite cryptography..Cryptologia 4 (1980), 4, 230-237. MR 0583776,
Reference: [15] Patarin, J.: Transfinite cryptography..IJUC 8 (2012), 11-72.
Reference: [16] Phan, R., Vaudenay, S.: On the impossibility of strong encryption over $\aleph_0$..In: Coding and Cryptology (Y. Chee, Ch. Li, S. Ling, H. Wang, and Ch. Xing, eds.), volume 5557 of Lecture Notes in Computer Science, Springer, Berlin-Heidelberg 2009, pp. 202-218. MR 2836242,
Reference: [17] Rokhlin, V. A.: On the fundamental ideas of measure theory..Trans. Amer. Math. Soc. 10 (1962), 1-54. MR 0047744
Reference: [18] Tao, T.: An introduction to measure theory..Amer. Math. Soc., Graduate Studies Math. 126 (2011), 206 pp. MR 2827917,
Reference: [19] Watson, S.: Power of the Sierpiński space..Topology Appl. 35 (1990), 2-3, 299-302. MR 1058809,
.

Files

Files Size Format View
Kybernetika_59-2023-2_1.pdf 447.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo