Title:
|
Access structures for finding characteristic-dependent linear rank inequalities (English) |
Author:
|
Peña-Macias, Victor |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
59 |
Issue:
|
2 |
Year:
|
2023 |
Pages:
|
198-208 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Determining information ratios of access structures is an important problem in secret sharing. Information inequalities and linear rank inequalities play an important role for proving bounds on these ratios. Characteristic-dependent linear rank inequalities are rank inequalities which are true over vector spaces with specific field characteristic. In this paper, using ideas of secret sharing, we show a theorem that produces characteristic-dependent linear rank inequalities. These inequalities are then used for getting lower bounds on information ratios of some access structures in linear secret sharing. (English) |
Keyword:
|
secret sharing |
Keyword:
|
cryptography |
Keyword:
|
access structures |
Keyword:
|
matroids |
Keyword:
|
complementary spaces |
Keyword:
|
linear rank inequalities |
Keyword:
|
entropy |
MSC:
|
68P30 |
MSC:
|
94A15 |
idMR:
|
MR4600374 |
DOI:
|
10.14736/kyb-2023-2-0198 |
. |
Date available:
|
2023-06-19T09:01:29Z |
Last updated:
|
2023-08-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151692 |
. |
Reference:
|
[1] Blasiak, A., Kleinberg, R., Lubetzky, E.: Lexicographic products and the power of non-linear network coding..Ib: IEEE Symposium on Foundations of Computer Science 2011, pp. 609-618. MR 2932737, |
Reference:
|
[2] Brickell, E. F., Davenport, D. M.: On the classification of ideal secret sharing..J. Cryptology (1991), 4, 123-134. |
Reference:
|
[3] Dougherty, R., Freiling, C., Zeger, K.: Achievable Rate regions for network coding..IEEE Trans. Inform. Theory 61 (2015), 5, 2488-2509. MR 3342292, |
Reference:
|
[4] Farràs, O., Kaced, T., Martín, S., Padró, C.: Improving the linear programming technique in the search for lower bounds in secret sharing..IEEE Transactions on Information Theory 66 (2020), 11, 7088-7100. MR 4173629, |
Reference:
|
[5] Jafari, A., Khazaei, S.: On Abelian secret sharing: Duality and separation..IACR Cryptol. ePrint Archive (2019), 575. MR 4317850 |
Reference:
|
[6] Martín, S., Padró, C., Yang, A.: Secret Sharing, Rank Inequalities, and Information Inequalities..IEEE Trans. Inform. Theory 2 (2016), 1, 599-609. MR 3448000, |
Reference:
|
[7] Padró, C.: Lecture notes in secret sharing..Cryptology ePrint Archive: Report (2012), 674. |
Reference:
|
[8] Peña-Macias, V., Sarria, H.: Characteristic-dependent linear rank inequalities via complementary vector spaces..J. Inform. Optim. Sci. 42 (2021), 2, 345-369. |
Reference:
|
[9] Peña-Macias, V., Sarria, H.: Characteristic-dependent linear rank inequalities in 21 variables..Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 43 (2019), 169, 76-5-770. MR 4048871, |
Reference:
|
[10] Shen, A., Hammer, D., Romashchenko, A. E., Vereshchagin, N. K.: Inequalities for Shannon Entropy and Kolmogorov Complexity..J. Computer Systems Sci. 60 (2000), 442-464. MR 1785025, |
. |