Previous |  Up |  Next

Article

Keywords:
secret sharing; cryptography; access structures; matroids; complementary spaces; linear rank inequalities; entropy
Summary:
Determining information ratios of access structures is an important problem in secret sharing. Information inequalities and linear rank inequalities play an important role for proving bounds on these ratios. Characteristic-dependent linear rank inequalities are rank inequalities which are true over vector spaces with specific field characteristic. In this paper, using ideas of secret sharing, we show a theorem that produces characteristic-dependent linear rank inequalities. These inequalities are then used for getting lower bounds on information ratios of some access structures in linear secret sharing.
References:
[1] Blasiak, A., Kleinberg, R., Lubetzky, E.: Lexicographic products and the power of non-linear network coding. Ib: IEEE Symposium on Foundations of Computer Science 2011, pp. 609-618. DOI  | MR 2932737
[2] Brickell, E. F., Davenport, D. M.: On the classification of ideal secret sharing. J. Cryptology (1991), 4, 123-134. DOI 
[3] Dougherty, R., Freiling, C., Zeger, K.: Achievable Rate regions for network coding. IEEE Trans. Inform. Theory 61 (2015), 5, 2488-2509. DOI  | MR 3342292
[4] Farràs, O., Kaced, T., Martín, S., Padró, C.: Improving the linear programming technique in the search for lower bounds in secret sharing. IEEE Transactions on Information Theory 66 (2020), 11, 7088-7100. DOI  | MR 4173629
[5] Jafari, A., Khazaei, S.: On Abelian secret sharing: Duality and separation. IACR Cryptol. ePrint Archive (2019), 575. MR 4317850
[6] Martín, S., Padró, C., Yang, A.: Secret Sharing, Rank Inequalities, and Information Inequalities. IEEE Trans. Inform. Theory 2 (2016), 1, 599-609. DOI  | MR 3448000
[7] Padró, C.: Lecture notes in secret sharing. Cryptology ePrint Archive: Report (2012), 674.
[8] Peña-Macias, V., Sarria, H.: Characteristic-dependent linear rank inequalities via complementary vector spaces. J. Inform. Optim. Sci. 42 (2021), 2, 345-369. DOI 
[9] Peña-Macias, V., Sarria, H.: Characteristic-dependent linear rank inequalities in 21 variables. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 43 (2019), 169, 76-5-770. DOI  | MR 4048871
[10] Shen, A., Hammer, D., Romashchenko, A. E., Vereshchagin, N. K.: Inequalities for Shannon Entropy and Kolmogorov Complexity. J. Computer Systems Sci. 60 (2000), 442-464. DOI  | MR 1785025
Partner of
EuDML logo