Previous |  Up |  Next

Article

Title: Existence of weak solutions for elliptic Dirichlet problems with variable exponent (English)
Author: Kim, Sungchol
Author: Ri, Dukman
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 3
Year: 2023
Pages: 283-302
Summary lang: English
.
Category: math
.
Summary: This paper presents several sufficient conditions for the existence of weak solutions to general nonlinear elliptic problems of the type $$ \begin{cases} -{\rm div} a(x, u, \nabla u)+b(x, u, \nabla u)=0 &\text {in} \ \Omega ,\\ u=0 &\text {on} \ \partial \Omega , \end{cases} $$ where $\Omega $ is a bounded domain of $\mathbb R^n$, $n\ge 2$. In particular, we do not require strict monotonicity of the principal part $a(x,z,\cdot )$, while the approach is based on the variational method and results of the variable exponent function spaces. (English)
Keyword: variable exponent
Keyword: existence
Keyword: variational methods
Keyword: Dirichlet problem
MSC: 35J20
MSC: 35J25
MSC: 35J70
idZBL: Zbl 07729578
idMR: MR4628614
DOI: 10.21136/MB.2022.0069-21
.
Date available: 2023-08-11T14:13:27Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151760
.
Reference: [1] Boccardo, L., Dacorogna, B.: A characterization of pseudo-monotone differential operators in divergence form.Commun. Partial Differ. Equations 9 (1984), 1107-1117. Zbl 0562.47041, MR 0759239, 10.1080/03605308408820358
Reference: [2] Bogachev, V. I.: Measure Theory. Volume I.Springer, Berlin (2007). Zbl 1120.28001, MR 2267655, 10.1007/978-3-540-34514-5
Reference: [3] Bonanno, G., Chinn{\`ı, A.: Existence and multiplicity of weak solutions for elliptic Dirichlet problems with variable exponent.J. Math. Anal. Appl. 418 (2014), 812-827. Zbl 1312.35111, MR 3206681, 10.1016/j.jmaa.2014.04.016
Reference: [4] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration.SIAM J. Appl. Math. 66 (2006), 1383-1406. Zbl 1102.49010, MR 2246061, 10.1137/050624522
Reference: [5] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis.Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013). Zbl 1268.46002, MR 3026953, 10.1007/978-3-0348-0548-3
Reference: [6] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017. Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8
Reference: [7] Fan, X.: On the sub-supersolution method for $p(x)$-Laplacian equations.J. Math. Anal. Appl. 330 (2007), 665-682. Zbl 1206.35103, MR 2302951, 10.1016/j.jmaa.2006.07.093
Reference: [8] Fan, X.: Remarks on eigenvalue problems involving the $p(x)$-Laplacian.J. Math. Anal. Appl. 352 (2009), 85-98. Zbl 1163.35026, MR 2499888, 10.1016/j.jmaa.2008.05.086
Reference: [9] Fan, X.: Existence and uniqueness for the $p(x)$-Laplacian-Dirichlet problems.Math. Nachr. 284 (2011), 1435-1445. Zbl 1234.35111, MR 2832655, 10.1002/mana.200810203
Reference: [10] Fan, X., Shen, J., Zhao, D.: Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$.J. Math. Anal. Appl. 262 (2001), 749-760. Zbl 0995.46023, MR 1859337, 10.1006/jmaa.2001.7618
Reference: [11] Fan, X., Zhang, Q.: Existence of solutions for $p(x)$-Laplacian Dirichlet problem.Nonlinear Anal., Theory Methods Appl., Ser. A 52 (2003), 1843-1852. Zbl 1146.35353, MR 1954585, 10.1016/S0362-546X(02)00150-5
Reference: [12] Fan, X., Zhang, Q., Zhao, D.: Eigenvalues of $p(x)$-Laplacian Dirichlet problem.J. Math. Anal. Appl. 302 (2005), 306-317. Zbl 1072.35138, MR 2107835, 10.1016/j.jmaa.2003.11.020
Reference: [13] Fu, Y., Yang, M.: Existence of solutions for quasilinear elliptic systems in divergence form with variable growth.J. Inequal. Appl. 2014 (2014), Article ID 23, 16 pages. Zbl 1310.35112, MR 3213021, 10.1186/1029-242X-2014-23
Reference: [14] Fu, Y., Yu, M.: The Dirichlet problem of higher order quasilinear elliptic equation.J. Math. Anal. Appl. 363 (2010), 679-689. Zbl 1182.35115, MR 2564887, 10.1016/j.jmaa.2009.10.003
Reference: [15] Galewski, M.: On the existence and stability of solutions for Dirichlet problem with $p(x)$-Laplacian.J. Math. Anal. Appl. 326 (2007), 352-362. Zbl 1159.35365, MR 2277787, 10.1016/j.jmaa.2006.03.006
Reference: [16] Gossez, J.-P., Mustonen, V.: Pseudo-monotonicity and the Leray-Lions condition.Differ. Integral Equ. 6 (1993), 37-45. Zbl 0786.35055, MR 1190164
Reference: [17] Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M.: Overview of differential equations with non-standard growth.Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 4551-4574. Zbl 1188.35072, MR 2639204, 10.1016/j.na.2010.02.033
Reference: [18] Ji, C.: Remarks on the existence of three solutions for the $p(x)$-Laplacian equations.Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 2908-2915. Zbl 1210.35132, MR 2785386, 10.1016/j.na.2010.12.013
Reference: [19] Kim, S., Ri, D.: Global boundedness and Hölder continuity of quasiminimizers with the general nonstandard growth conditions.Nonlinear Anal., Theory Methods Appl., Ser. A 185 (2019), 170-192. Zbl 1419.49045, MR 3926581, 10.1016/j.na.2019.02.016
Reference: [20] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. Zbl 0784.46029, MR 1134951, 10.21136/CMJ.1991.102493
Reference: [21] Lions, J. L.: Quelques méthodes de résolution des problémes aux limites nonlinéaires.Etudes mathematiques. Dunod, Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [22] Mashiyev, R. A., Cekic, B., Buhrii, O. M.: Existence of solutions for $p(x)$-Laplacian equations.Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Article ID 65, 13 pages. Zbl 1207.35142, MR 2735026, 10.14232/ejqtde.2010.1.65
Reference: [23] Mihăilescu, M., Repovš, D.: On a PDE involving the $\mathcal{A}_{p(\cdot)}$-Laplace operator.Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 975-981. Zbl 1269.35009, MR 2847471, 10.1016/j.na.2011.09.034
Reference: [24] Pucci, P., Zhang, Q.: Existence of entire solutions for a class of variable exponent elliptic equations.J. Differ. Equations 257 (2014), 1529-1566. Zbl 1292.35135, MR 3217048, 10.1016/j.jde.2014.05.023
Reference: [25] Rădulescu, V. D.: Nonlinear elliptic equations with variable exponent: Old and new.Nonlinear Anal., Theory Methods Appl., Ser. A 121 (2015), 336-369. Zbl 1321.35030, MR 3348928, 10.1016/j.na.2014.11.007
Reference: [26] Roubíček, T.: Nonlinear Partial Differential Equations with Applications.ISNM. International Series of Numerical Mathematics 153. Birkhäuser, Basel (2005). Zbl 1087.35002, MR 2176645, 10.1007/978-3-0348-0513-1
Reference: [27] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory.Lecture Notes in Mathematics 1748. Springer, Berlin (2000). Zbl 0962.76001, MR 1810360, 10.1007/BFb0104029
Reference: [28] Yu, C., Ri, D.: Global $L^{\infty}$-estimates and Hölder continuity of weak solutions to elliptic equations with the general nonstandard growth conditions.Nonlinear Anal., Theory Methods Appl., Ser. A 156 (2017), 144-166. Zbl 1375.35127, MR 3634773, 10.1016/j.na.2017.02.019
Reference: [29] Zeidler, E.: Nonlinear Functional Analysis and Its Applications III: Variational Methods and Optimization.Springer, New York (1985). Zbl 0583.47051, MR 0768749, 10.1007/978-1-4612-5020-3
Reference: [30] Zhang, A.: $p(x)$-Laplacian equations satisfying Cerami condition.J. Math. Anal. Appl. 337 (2008), 547-555. Zbl 1216.35065, MR 2356093, 10.1016/j.jmaa.2007.04.007
Reference: [31] Zhikov, V. V.: Averaging of functionals of the calculus of variations and elasticity theory.Math. USSR, Izv. 29 (1987), 33-66 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50 1986 675-710. Zbl 0599.49031, MR 0864171, 10.1070/IM1987v029n01ABEH000958
Reference: [32] Zhou, Q.-M.: On the superlinear problems involving $p(x)$-Laplacian-like operators without AR-condition.Nonlinear Anal., Real World Appl. 21 (2015), 161-196. Zbl 1304.35471, MR 3261587, 10.1016/j.nonrwa.2014.07.003
.

Files

Files Size Format View
MathBohem_148-2023-3_1.pdf 315.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo