Previous |  Up |  Next

Article

Title: Stability result for a thermoelastic Bresse system with delay term in the internal feedback (English)
Author: Bouzettouta, Lamine
Author: Baibeche, Sabah
Author: Abdelli, Manel
Author: Guesmia, Amar
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 3
Year: 2023
Pages: 409-434
Summary lang: English
.
Category: math
.
Summary: The studies considered here are concerend with a linear thermoelastic Bresse system with delay term in the feedback. The heat conduction is also given by Cattaneo's law. Under an appropriate assumption between the weight of the delay and the weight of the damping, we prove the well-posedness of the problem using the semigroup method. Furthermore, based on the energy method, we establish an exponential stability result depending of a condition on the constants of the system that was first considered by A. Keddi, T. Apalara, S. A. Messaoudi in 2018. (English)
Keyword: Bresse system
Keyword: delay
Keyword: decay rate
Keyword: energy method
Keyword: semigroup method
Keyword: thermoelastic
MSC: 35B40
MSC: 74H40
MSC: 74H55
MSC: 93D15
MSC: 93D20
idZBL: Zbl 07729582
idMR: MR4628618
DOI: 10.21136/MB.2022.0154-21
.
Date available: 2023-08-11T14:18:14Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151765
.
Reference: [1] Boussouira, F. Alabau, Rivera, J. E. Muñoz, Júnior, D. S. Almeida: Stability to weak dissipative Bresse system.J. Math. Anal. Appl. 374 (2011), 481-498. Zbl 1209.35018, MR 2729236, 10.1016/j.jmaa.2010.07.046
Reference: [2] Alves, M. O., Fatori, L. H., Silva, M. A. J., Monteiro, R. N.: Stability and optimality of decay rate for a weakly dissipative Bresse system.Math. Methods Appl. Sci. 38 (2015), 898-908. Zbl 1316.35178, MR 3324487, 10.1002/mma.3115
Reference: [3] Benaissa, A., Miloudi, M., Mokhtari, M.: Global existence and energy decay of solutions to a Bresse system with delay terms.Commentat. Math. Univ. Carol. 56 (2015), 169-186. Zbl 1340.35198, MR 3338731, 10.14712/1213-7243.2015.116
Reference: [4] Bouzettouta, L., Zitouni, S., Zennir, K., Guesmia, A.: Stability of Bresse system with internal distributed delay.J. Math. Comput. Sci. 7 (2017), 92-118.
Reference: [5] Bouzettouta, L., Zitouni, S., Zennir, K., Sissaoui, H.: Well-posedness and decay of solutions to Bresse system with internal distributed delay.Int. J. Appl. Math. Stat. 56 (2017), 153-168. MR 3620629
Reference: [6] Bresse, J. A. C.: Cours de méchanique appliquée.Mallet Bachelier, Paris (1859), French.
Reference: [7] Chen, G.: Control and stabilization for the wave equation in a bounded domain.SIAM J. Control Optim. 17 (1979), 66-81. Zbl 0402.93016, MR 0516857, 10.1137/0317007
Reference: [8] Chen, G.: Control and stabilization for the wave equation in a bounded domain. II.SIAM J. Control Optim. 19 (1981), 114-122. Zbl 0461.93037, MR 0603084, 10.1137/0319009
Reference: [9] Datko, R., Lagnese, J., Polis, M. P.: An example on the effect of time delays in boundary feedback stabilization of wave equations.SIAM J. Control Optim. 24 (1986), 152-156. Zbl 0592.93047, MR 0818942, 10.1137/0324007
Reference: [10] Fatori, L. H., Rivera, J. E. Muñoz: Rates of decay to weak thermoelastic Bresse system.IMA J. Appl. Math. 75 (2010), 881-904. Zbl 1209.80005, MR 2740037, 10.1093/imamat/hxq038
Reference: [11] Sare, H. D. Fernándes, Racke, R.: On the stability of damped Timoshenko systems: Cattaneo versus Fourier law.Arch. Ration. Mech. Anal. 194 (2009), 221-251. Zbl 1251.74011, MR 2533927, 10.1007/s00205-009-0220-2
Reference: [12] Gallego, F. A., Rivera, J. E. Muñoz: Decay rates for solutions to thermoelastic Bresse systems of types I and III.Electron. J. Differ. Equ. 2017 (2017), Article ID 73, 26 pages. Zbl 1370.35046, MR 3651870
Reference: [13] Guesmia, A., Kafini, M.: Bresse system with infinite memories.Math. Methods Appl. Sci. 38 (2015), 2389-2402. Zbl 1317.35007, MR 3366806, 10.1002/mma.3228
Reference: [14] Keddi, A. A., Apalara, T. A., Messaoudi, S. A.: Exponential and polynomial decay in a thermoelastic-Bresse system with second sound.Appl. Math. Optim. 77 (2018), 315-341. Zbl 1388.35188, MR 3776342, 10.1007/s00245-016-9376-y
Reference: [15] Kim, J. U., Renardy, Y.: Boundary control of the Timoshenko beam.SIAM J. Control Optim. 25 (1987), 1417-1429. Zbl 0632.93057, MR 0912448, 10.1137/0325078
Reference: [16] Komornik, V.: Exact Controllability and Stabilization: The Multiplier Method.Research in Applied Mathematics 36. John Wiley & Sons, Chichester (1994). Zbl 0937.93003, MR 1359765
Reference: [17] Liu, Z., Rao, B.: Energy decay rate of the thermoelastic Bresse system.Z. Angew. Math. Phys. 60 (2009), 54-69. Zbl 1161.74030, MR 2469727, 10.1007/s00033-008-6122-6
Reference: [18] Liu, Z., Zheng, S.: Semigroups Associated with Dissipative Systems.Chapman & Hall/CRC Research Notes in Mathematics 398. Chapman & Hall/CRC, Boca Raton (1999). Zbl 0924.73003, MR 1681343
Reference: [19] Messaoudi, S. A., Mustafa, M. I.: On the internal and boundary stabilization of Timoshenko beams.NoDEA, Nonlinear Differ. Equ. Appl. 15 (2008), 655-671. Zbl 1163.74037, MR 2465776, 10.1007/s00030-008-7075-3
Reference: [20] Messaoudi, S. A., Mustafa, M. I.: On the stabilization of the Timoshenko system by a weak nonlinear dissipation.Math. Methods Appl. Sci. 32 (2009), 454-469. Zbl 1171.35014, MR 2493590, 10.1002/mma.1047
Reference: [21] Rivera, J. E. Munõz, Racke, R.: Global stability for damped Timoshenko systems.Discrete Contin. Dyn. Syst. 9 (2003), 1625-1639. Zbl 1047.35023, MR 2017685, 10.3934/dcds.2003.9.1625
Reference: [22] Mustafa, M. I.: A uniform stability result for thermoelasticity of type III with boundary distributed delay.J. Math. Anal. Appl. 415 (2014), 148-158. Zbl 1310.74006, MR 3173160, 10.1016/j.jmaa.2014.01.080
Reference: [23] Mustafa, M. I., Kafini, M.: Exponential decay in thermoelastic systems with internal distributed delay.Palest. J. Math. 2 (2013), 287-299. Zbl 1343.93066, MR 3109903
Reference: [24] Nakao, M.: Decay of solutions of some nonlinear evolution equations.J. Math. Anal. Appl. 60 (1977), 542-549. Zbl 0376.34051, MR 0499564, 10.1016/0022-247X(77)90040-3
Reference: [25] Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks.SIAM J. Control Optim. 45 (2006), 1561-1585. Zbl 1180.35095, MR 2272156, 10.1137/060648891
Reference: [26] Nicaise, S., Pignotti, C.: Stabilization of the wave equation with boundary or internal distributed delay.Differ. Integral Equ. 21 (2008), 935-958. Zbl 1224.35247, MR 2483342
Reference: [27] Ouchnane, D.: A stability result of a Timoshenko system in thermoelasticity of second sound with a delay term in the internal feedback.Georgian Math. J. 21 (2014), 475-489. Zbl 1304.35103, MR 3284711, 10.1515/gmj-2014-0045
Reference: [28] Park, J.-H., Kang, J.-R.: Energy decay of solutions for Timoshenko beam with a weak non-linear dissipation.IMA J. Appl. Math. 76 (2011), 340-350. Zbl 1219.35311, MR 2781698, 10.1093/imamat/hxq040
Reference: [29] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Applied Mathematical Sciences 44. Springer, New York (1983). Zbl 0516.47023, MR 0710486, 10.1007/978-1-4612-5561-1
Reference: [30] Raposo, C. A., Ferreira, J., Santos, M. L., Castro, N. N. O.: Exponential stability for the Timoshenko system with two weak dampings.Appl. Math. Lett. 18 (2005), 535-541. Zbl 1072.74033, MR 2127817, 10.1016/j.aml.2004.03.017
Reference: [31] Santos, M. L., Soufyane, A., Júnior, D. S. Almeida: Asymptotic behavior to Bresse system with past history.Q. Appl. Math. 73 (2015), 23-54. Zbl 1308.74066, MR 3322725, 10.1090/S0033-569X-2014-01382-4
Reference: [32] Soriano, J. A., Rivera, J. E. Muñoz, Fatori, L. H.: Bresse system with indefinite damping.J. Math. Anal. Appl. 387 (2012), 284-290. Zbl 1231.35113, MR 2845750, 10.1016/j.jmaa.2011.08.072
Reference: [33] Timoshenko, S. P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars.Phil. Mag. (6) 41 (1921), 744-746. 10.1080/14786442108636264
Reference: [34] Wehbe, A., Youssef, W.: Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks.J. Math. Phys. 51 (2010), Article ID 103523, 17 pages. Zbl 1314.74035, MR 2761337, 10.1063/1.3486094
Reference: [35] Xu, C. Q., Yung, S. P., Li, L. K.: Stabilization of wave systems with input delay in the boundary control.ESAIM, Control Optim. Calc. Var. 12 (2006), 770-785. Zbl 1105.35016, MR 2266817, 10.1051/cocv:2006021
Reference: [36] Zitouni, S., Bouzettouta, L., Zennir, K., Ouchenane, D.: Exponential decay of thermo-elastic Bresse system with distributed delay term.Hacet. J. Math. Stat. 47 (2018), 1216-1230. Zbl 07406314, MR 3974506, 10.15672/hjms.2017.498
.

Files

Files Size Format View
MathBohem_148-2023-3_5.pdf 292.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo