Previous |  Up |  Next

Article

Title: Null controllability of a coupled model in population dynamics (English)
Author: Echarroudi, Younes
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 3
Year: 2023
Pages: 349-408
Summary lang: English
.
Category: math
.
Summary: We are concerned with the null controllability of a linear coupled population dynamics system or the so-called prey-predator model with Holling type I functional response of predator wherein both equations are structured in age and space. It is worth mentioning that in our case, the space variable is viewed as the ``gene type'' of population. The studied system is with two different dispersion coefficients which depend on the gene type variable and degenerate in the boundary. This system will be governed by one control force. To reach our goal, we develop first a Carleman type inequality for its adjoint system and consequently the pertinent observability inequality. Note that such a system is obtained via the original paradigm using the Lagrangian method. Afterwards, with the help of a cost function we will be able to deduce the existence of a control acting on a subset of the gene type domain and which steers both populations of a certain class of age to extinction in a finite time.\looseness -2 (English)
Keyword: degenerate population dynamics model
Keyword: Lotka-Volterra system
Keyword: Carleman estimate
Keyword: observability inequality
Keyword: null controllability
MSC: 35J70
MSC: 45K05
MSC: 92D25
MSC: 93B05
MSC: 93B07
idZBL: Zbl 07729581
idMR: MR4628617
DOI: 10.21136/MB.2022.0088-21
.
Date available: 2023-08-11T14:17:24Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151764
.
Reference: [1] Ainseba, B.: Exact and approximate controllability of the age and space population dynamics structured model.J. Math. Anal. Appl. 275 (2002), 562-574. Zbl 1005.92023, MR 1943766, 10.1016/S0022-247X(02)00238-X
Reference: [2] Ainseba, B.: Corrigendum to ``Exact and approximate controllability of the age and space population dynamics structured model'' (J. Math. Anal. Appl. 275 (2) (2002), 562-574).J. Math. Anal. Appl. 393 (2012), 328. Zbl 1260.92095, MR 2921673, 10.1016/j.jmaa.2012.01.059
Reference: [3] Ainseba, B., Aniţa, S.: Local exact controllability of the age-dependent population dynamics with diffusion.Abstr. Appl. Anal. 6 (2001), 357-368. Zbl 0995.93008, MR 1880930, 10.1155/S108533750100063X
Reference: [4] Ainseba, B., Aniţa, S.: Internal exact controllability of the linear population dynamics with diffusion.Electron. J. Differ. Equ. 2004 (2004), Article ID 112, 11 pages. Zbl 1134.93311, MR 2108883
Reference: [5] Ainseba, B., Aniţa, S.: Internal stabilizability for a reaction-diffusion problem modeling a predator-prey system.Nonlinear Anal., Theory Methods Appl., Ser. A 61 (2005), 491-501. Zbl 1072.35090, MR 2126609, 10.1016/j.na.2004.09.055
Reference: [6] Ainseba, B., Echarroudi, Y., Maniar, L.: Null controllability of a population dynamics with degenerate diffusion.Differ. Integral Equ. 26 (2013), 1397-1410. Zbl 1313.35193, MR 3129015
Reference: [7] Ainseba, B., Langlais, M.: On a population dynamics control problem with age dependence and spatial structure.J. Math. Anal. Appl. 248 (2000), 455-474. Zbl 0964.93045, MR 1776023, 10.1006/jmaa.2000.6921
Reference: [8] Hassi, E. M. Ait Ben, Khodja, F. Ammar, Hajjaj, A., Maniar, L.: Null controllability of degenerate parabolic cascade systems.Port. Math. (N.S.) 68 (2011), 345-367. Zbl 1231.35103, MR 2832802, 10.4171/PM/1895
Reference: [9] Alabau-Boussouira, F., Cannarsa, P., Fragnelli, G.: Carleman estimates for degenerate parabolic operators with applications to null controllability.J. Evol. Equ. 6 (2006), 161-204. Zbl 1103.35052, MR 2227693, 10.1007/s00028-006-0222-6
Reference: [10] Aniţa, S.: Analysis and Control of Age-Dependent Population Dynamics.Mathematical Modelling: Theory and Applications 11. Kluwer Acadamic, Dordrecht (2000). Zbl 0960.92026, MR 1797596, 10.1007/978-94-015-9436-3
Reference: [11] Apreutesei, N., Dimitriu, G.: On a prey-predator reaction-diffusion system with Holling type III functional response.J. Comput. Appl. Math. 235 (2010), 366-379. Zbl 1205.65274, MR 2677695, 10.1016/j.cam.2010.05.040
Reference: [12] Barbu, V., Iannelli, M., Martcheva, M.: On the controllability of the Lotka-McKendrick model of population dynamics.J. Math. Anal. Appl. 253 (2001), 142-165. Zbl 0961.92024, MR 1804594, 10.1006/jmaa.2000.7075
Reference: [13] Boutaayamou, I., Echarroudi, Y.: Null controllability of population dynamics with interior degeneracy.Electron. J. Differ. Equ. 2017 (2017), Article ID 131, 21 pages. Zbl 1370.35183, MR 3665593
Reference: [14] Boutaayamou, I., Fragnelli, G.: A degenerate population system: Carleman estimates and controllability.Nonlinear Anal., Theory Methods Appl., Ser. A 195 (2020), Article ID 111742, 29 pages. Zbl 1435.35398, MR 4052601, 10.1016/j.na.2019.111742
Reference: [15] Boutaayamou, I., Salhi, J.: Null controllability for linear parabolic cascade systems with interior degeneracy.Electron. J. Differ. Equ. 2016 (2016), Article ID 305, 22 pages. Zbl 1353.35184, MR 3604750
Reference: [16] Cabello, T., Gámez, M., Varga, Z.: An improvement of the Holling type III functional response in entomophagous species model.J. Biol. Syst. 15 (2007), 515-524. Zbl 1146.92326, 10.1142/S0218339007002325
Reference: [17] Campiti, M., Metafune, G., Pallara, D.: Degenerate self-adjoint evolution equations on the unit interval.Semigroup Forum 57 (1998), 1-36. Zbl 0915.47029, MR 1621852, 10.1007/PL00005959
Reference: [18] Cannarsa, P., Fragnelli, G.: Null controllability of semilinear degenerate parabolic equations in bounded domains.Electron. J. Differ. Equ. 2006 (2006), Article ID 136, 20 pages. Zbl 1112.35335, MR 2276561
Reference: [19] Cannarsa, P., Fragnelli, G., Rocchetti, D.: Null controllability of degenerate parabolic with drift.Netw. Heterog. Media 2 (2007), 695-715. Zbl 1140.93011, MR 2357764, 10.3934/nhm.2007.2.695
Reference: [20] Cannarsa, P., Fragnelli, G., Rocchetti, D.: Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form.J. Evol. Equ. 8 (2008), 583-616. Zbl 1176.35108, MR 2460930, 10.1007/s00028-008-0353-34
Reference: [21] Cannarsa, P., Fragnelli, G., Vancostenoble, J.: Linear degenerate parabolic equations in bounded domains: Controllability and observability.Systems, Control, Modeling and Optimization IFIP International Federation for Information Processing 202. Springer, New York (2006), 163-173. Zbl 1214.93021, MR 2241704, 10.1007/0-387-33882-9_15
Reference: [22] Cannarsa, P., Fragnelli, G., Vancostenoble, J.: Regional controllability of semilinear degenerate parabolic equations in bounded domains.J. Math. Anal. Appl. 320 (2006), 804-818. Zbl 1177.93016, MR 2225996, 10.1016/j.jmaa.2005.07.006
Reference: [23] Cannarsa, P., Martinez, P., Vancostenoble, J.: Persistent regional null controllability for a class of degenerate parabolic equations.Commun. Pure Appl. Anal. 3 (2004), 607-635. Zbl 1063.35092, MR 2106292, 10.3934/cpaa.2004.3.607
Reference: [24] Cannarsa, P., Martinez, P., Vancostenoble, J.: Null controllability of degenerate heat equations.Adv. Differ. Equ. 10 (2005), 153-190. Zbl 1145.35408, MR 2106129
Reference: [25] Dawes, J. H. P., Souza, M. O.: A derivation of Holling's type I, II and III functional responses in predator-prey systems.J. Theor. Biol. 327 (2013), 11-22. Zbl 1322.92056, MR 3046076, 10.1016/j.jtbi.2013.02.017
Reference: [26] Echarroudi, Y., Maniar, L.: Null controllability of a model in population dynamics.Electron. J. Differ. Equ. 2014 (2014), Article ID 240, 20 pages. Zbl 06430755, MR 3291740
Reference: [27] Echarroudi, Y., Maniar, L.: Null controllability of a degenerate cascade model in population dynamics.Studies in Evolution Equations and Related Topics STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham (2021), 211-268. Zbl 07464638, MR 4367456, 10.1007/978-3-030-77704-3_10
Reference: [28] Fragnelli, G.: An age-dependent population equation with diffusion and delayed birth process.Int. J. Math. Math. Sci. 2005 (2005), 3273-3289. Zbl 1084.92029, MR 2208054, 10.1155/IJMMS.2005.3273
Reference: [29] Fragnelli, G.: Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates.Discrete Contin. Dyn. Syst., Ser. S 6 (2013), 687-701. Zbl 1258.93025, MR 3010677, 10.3934/dcdss.2013.6.687
Reference: [30] Fragnelli, G.: Carleman estimates and null controllability for a degenerate population model.J. Math. Pures Appl. (9) 115 (2018), 74-126. Zbl 1391.35238, MR 3808342, 10.1016/j.matpur.2018.01.003
Reference: [31] Fragnelli, G.: Null controllability for a degenerate population model in divergence form via Carleman estimates.Adv. Nonlinear Anal. 9 (2020), 1102-1129. Zbl 1427.35141, MR 4019739, 10.1515/anona-2020-0034
Reference: [32] Fragnelli, G., Idrissi, A., Maniar, L.: The asymptotic behavior of a population equation with diffusion and delayed birth process.Discrete Contin. Dyn. Syst., Ser. B 7 (2007), 735-754. Zbl 1211.35046, MR 2291870, 10.3934/dcdsb.2007.7.735
Reference: [33] Fragnelli, G., Martinez, P., Vancostenoble, J.: Qualitative properties of a population dynamics system describing pregnancy.Math. Models Methods Appl. Sci. 15 (2005), 507-554. Zbl 1092.92037, MR 2137524, 10.1142/S0218202505000455
Reference: [34] Fragnelli, G., Mugnai, D.: Carleman estimates and observability inequalities for parabolic equations with interior degeneracy.Adv. Nonlinear Anal. 2 (2013), 339-378. Zbl 1282.35101, MR 3199737, 10.1515/anona-2013-0015
Reference: [35] Fragnelli, G., Mugnai, D.: Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations.Mem. Am. Math. Soc. 1146 (2016), 88 pages. Zbl 1377.93043, MR 3498150, 10.1090/memo/1146
Reference: [36] Fragnelli, G., Tonetto, L.: A population equation with diffusion.J. Math. Anal. Appl. 289 (2004), 90-99. Zbl 1109.34042, MR 2020529, 10.1016/j.jmaa.2003.08.047
Reference: [37] Fursikov, A. V., Imanuvilov, O. Y.: Controllability of Evolutions Equations.Lecture Notes Series, Seoul 34. Seoul National University, Seoul (1996). Zbl 0862.49004, MR 1406566
Reference: [38] Hajjaj, A., Maniar, L., Salhi, J.: Carleman estimates and null controllability of degenerate/singular parabolic systems.Electron. J. Differ. Equ. 2016 (2016), Article ID 292, 25 pages. Zbl 1353.35186, MR 3578313
Reference: [39] Hegoburu, N., Tucsnak, M.: Null controllability of the Lotka-Mckendrick system with spatial diffusion.Math. Control Relat. Fields 8 (2018), 707-720. Zbl 1417.92131, MR 3917460, 10.3934/mcrf.2018030
Reference: [40] Jia, Y., Wu, J., Xu, H.-K.: Positive solutions of a Lotka-Volterra competition model with cross-diffusion.Comput. Math. Appl. 68 (2014), 1220-1228. Zbl 1367.92129, MR 3272537, 10.1016/j.camwa.2014.08.016
Reference: [41] Juska, A., Gouveia, L., Gabriel, J., Koneck, S.: Negotiating bacteriological meat contamination standards in the US: The case of $\it E. Coli$ O157:H7.Sociologia Ruralis 40 (2000), 249-271. 10.1111/1467-9523.00146
Reference: [42] Kooij, R. E., Zegeling, A.: A predator-prey model with Ivlev's functional response.J. Math. Anal. Appl. 198 (1996), 473-489. Zbl 0851.34030, MR 1376275, 10.1006/jmaa.1996.0093
Reference: [43] Langlais, M.: A nonlinear problem in age-dependent population diffusion.SIAM J. Math. Anal. 16 (1985), 510-529. Zbl 0589.92013, MR 0783977, 10.1137/0516037
Reference: [44] Liu, B., Zhang, Y., Chen, L.: Dynamics complexities of a Holling I predator-prey model concerning periodic biological and chemical control.Chaos Solitons Fractals 22 (2004), 123-134. Zbl 1058.92047, MR 2057553, 10.1016/j.chaos.2003.12.060
Reference: [45] Liu, X., Huang, Q.: The dynamics of a harvested predator-prey system with Holling type IV functional response.Biosystems 169-170 (2018), 26-39. 10.1016/j.biosystems.2018.05.005
Reference: [46] Mozorov, A. Y.: Emergence of Holling type III zooplankton functional response: Bringing together field evidence and mathematical modelling.J. Theor. Biol. 265 (2010), 45-54. Zbl 1406.92676, MR 2981553, 10.1016/j.jtbi.2010.04.016
Reference: [47] Pavel, L.: Classical solutions in Sobolev spaces for a class of hyperbolic Lotka-Volterra systems.SIAM J. Control Optim. 51 (2013), 2132-2151. Zbl 1275.35138, MR 3053572, 10.1137/090767303
Reference: [48] Peng, R., Shi, J.: Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case.J. Differ. Equations 247 (2009), 866-886. Zbl 1169.35328, MR 2528495, 10.1016/j.jde.2009.03.008
Reference: [49] Piazzera, S.: An age-dependent population equation with delayed birth process.Math. Methods Appl. Sci. 27 (2004), 427-439. Zbl 1038.35145, MR 2034234, 10.1002/mma.462
Reference: [50] Pozio, M. A., Tesei, A.: Degenerate parabolic problems in population dynamics.Japan J. Appl. Math. 2 (1985), 351-380. MR 0839335, 10.1007/BF03167082
Reference: [51] Pugliese, A., Tonetto, L.: Well-posedness of an infinite system of partial differential equations modelling parasitic infection in age-structured host.J. Math. Anal. Appl. 284 (2003), 144-164. Zbl 1039.35130, MR 1996124, 10.1016/S0022-247X(03)00295-6
Reference: [52] Rhandi, A., Schnaubelt, R.: Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$.Discrete Contin. Dyn. Syst. 5 (1999), 663-683. Zbl 1002.92016, MR 1696337, 10.3934/dcds.1999.5.663
Reference: [53] Salhi, J.: Null controllability for a coupled system of degenerate/singular parabolic equations in nondivergence form.Electron. J. Qual. Theory Differ. Equ. 2018 (2018), Article ID 31, 28 pages. Zbl 1413.35269, MR 3811494, 10.14232/ejqtde.2018.1.31
Reference: [54] Seo, G., DeAngelis, D. L.: A predator-prey model with a Holling type I functional response including a predator mutual interference.J. Nonlinear Sci. 21 (2011), 811-833. Zbl 1238.92049, MR 2860930, 10.1007/s00332-011-9101-6
Reference: [55] Skalski, G. T., Gilliam, J. F.: Functional responses with predator interference: Viable alternatives to the Holling type II model.Ecology 82 (2001), 3083-3092. 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
Reference: [56] Traore, O.: Null controllability of a nonlinear population dynamics problem.Int. J. Math. Math. Sci. 2006 (2006), Article ID 49279, 20 pages. Zbl 1127.93017, MR 2268531, 10.1155/IJMMS/2006/49279
Reference: [57] Wang, W., Zhang, L., Wang, H., Li, Z.: Pattern formation of a predator-prey system with Ivlev-type functional response.Ecological Modelling 221 (2010), 131-140. MR 3075712, 10.1016/j.ecolmodel.2009.09.011
Reference: [58] Webb, G. F.: Population models structured by age, size, and spatial position.Structured Population Models in Biology and Epidemiology Lecture Notes in Mathematics 1936. Springer, Berlin (2008), 1-49. MR 2433574, 10.1007/978-3-540-78273-5_1
Reference: [59] Zhang, Y., Xu, Z., Liu, B., Chen, L.: Dynamic analysis of a Holling I predator-prey system with mutual interference concerning pest control.J. Biol. Syst. 13 (2005), 45-58. Zbl 1073.92061, 10.1142/S0218339005001392
Reference: [60] Zhao, C., Wang, M., Zhao, P.: Optimal control of harvesting for age-dependent predator-prey system.Math. Comput. Modelling 42 (2005), 573-584. Zbl 1088.92063, MR 2173475, 10.1016/j.mcm.2004.07.019
.

Files

Files Size Format View
MathBohem_148-2023-3_4.pdf 539.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo