Previous |  Up |  Next

Article

Title: A new approach to antisymmetric infinitesimal bialgebras (English)
Author: Ma, Tianshui
Author: Li, Bei
Author: Li, Jie
Author: Chen, Miaoshuang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 3
Year: 2023
Pages: 755-764
Summary lang: English
.
Category: math
.
Summary: We present a notion of an anti-covariant bialgebra extending the anti-symmetric infinitesimal bialgebra and also provide some equivalent characterizations of it. We also prove that an anti-associative Yang-Baxter pair can produce a special Rota-Baxter system. (English)
Keyword: infinitesimal bialgebra
Keyword: quasitriangular infinitesimal bialgebra
MSC: 16T10
MSC: 16T25
MSC: 17B38
idZBL: Zbl 07729536
idMR: MR4632856
DOI: 10.21136/CMJ.2023.0232-22
.
Date available: 2023-08-11T14:22:49Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151773
.
Reference: [1] Aguiar, M.: Infinitesimal Hopf algebras.New Trends in Hopf Algebra Theory Contemporary Mathematics 267. AMS, Providence (2000), 1-29. Zbl 0982.16028, MR 1800704, 10.1090/conm/267
Reference: [2] Aguiar, M.: On the associative analog of Lie bialgebras.J. Algebra 244 (2001), 492-532. Zbl 0991.16033, MR 1859038, 10.1006/jabr.2001.8877
Reference: [3] Bai, C.: Double constructions of Frobenius algebras, Connes cocycles and their duality.J. Noncommut. Geom. 4 (2010), 475-530. Zbl 1250.17028, MR 2718800, 10.4171/JNCG/64
Reference: [4] Bai, C., Guo, L., Ma, T.: Bialgebras, Frobenius algebras and associative Yang-Baxter equations for Rota-Baxter algebras.Available at https://arxiv.org/abs/2112.10928 (2021), 27 pages. MR 4534711
Reference: [5] Brzeziński, T.: Rota-Baxter systems, dendriform algebras and covariant bialgebras.J. Algebra 460 (2016), 1-25. Zbl 1376.16039, MR 3510392, 10.1016/j.jalgebra.2016.04.018
Reference: [6] Drinfel'd, V. G.: Hamiltonian structures on Lie groups, Lie bialgebras and geometric meaning of the classical Yang-Baxter equations.Sov. Math., Dokl. 27 (1983), 67-71 translation from Dokl. Akad. Nauk SSSR 268 1983 285-287. Zbl 0526.58017, MR 0688240
Reference: [7] Gao, X., Wang, X.: Infinitesimal unitary Hopf algebras and planar rooted forests.J. Algebr. Comb. 49 (2019), 437-460. Zbl 1437.16030, MR 3954430, 10.1007/s10801-018-0830-6
Reference: [8] Joni, S. A., Rota, G.-C.: Coalgebras and bialgebras in combinatorics.Stud. Appl. Math. 61 (1979), 93-139. Zbl 0471.05020, MR 0544721, 10.1002/sapm197961293
Reference: [9] Liu, L., Makhlouf, A., Menini, C., Panaite, F.: BiHom-Novikov algebras and infinitesimal BiHom-bialgebras.J. Algebra 560 (2020), 1146-1172. Zbl 07239031, MR 4117866, 10.1016/j.jalgebra.2020.06.012
Reference: [10] Loday, J.-L., Ronco, M.: On the structure of cofree Hopf algebras.J. Reine Angew. Math. 592 (2006), 123-155. Zbl 1096.16019, MR 2222732, 10.1515/CRELLE.2006.025
Reference: [11] Ma, T., Li, J.: Nonhomogeneous associative Yang-Baxter equations.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 65 (2022), 97-118. MR 4408202
Reference: [12] Ma, T., Li, J., Yang, T.: Coquasitriangular infinitesimal BiHom-bialgebras and related structures.Commun. Algebra 49 (2021), 2423-2443. Zbl 1476.17017, MR 4255016, 10.1080/00927872.2021.1871913
Reference: [13] Ma, T., Makhlouf, A., Silvestrov, S.: Rota-Baxter cosystems and coquasitriangular mixed bialgebras.J. Algebra Appl. 20 (2021), Article ID 2150064, 28 pages. Zbl 1476.16030, MR 4251744, 10.1142/S021949882150064X
Reference: [14] Ma, T., Yang, H.: Drinfeld double for infinitesimal BiHom-bialgebras.Adv. Appl. Clifford Algebr. 30 (2020), Article ID 42, 22 pages. Zbl 1473.17056, MR 4118445, 10.1007/s00006-020-01071-x
Reference: [15] Ma, T., Yang, H., Zhang, L., Zheng, H.: Quasitriangular covariant monoidal BiHom-bialgebras, associative monoidal BiHom-Yang-Baxter equations and Rota-Baxter paired monoidal BiHom-modules.Colloq. Math. 161 (2020), 189-221. Zbl 1465.16033, MR 4097065, 10.4064/cm7993-9-2019
Reference: [16] Wang, S., Wang, S.: Drinfeld double for braided infinitesimal Hopf algebras.Commun. Algebra 42 (2014), 2195-2212. Zbl 1301.16035, MR 3169699, 10.1080/00927872.2013.766796
Reference: [17] Yau, D.: Infinitesimal Hom-bialgebras and Hom-Lie bialgebras.Available at https://arxiv.org/abs/1001.5000 (2010), 35 pages. MR 2660540
Reference: [18] Zhang, Y., Chen, D., Gao, X., Luo, Y.-F.: Weighted infinitesimal unitary bialgebras on rooted forests and weighted cocycles.Pac. J. Math. 302 (2019), 741-766. Zbl 1435.16005, MR 4036749, 10.2140/pjm.2019.302.741
Reference: [19] Zhang, Y., Gao, X.: Weighted infinitesimal bialgebras.Available at https://arxiv.org/abs/1810.10790v3 (2022), 44 pages.
Reference: [20] Zhang, Y., Gao, X., Luo, Y.: Weighted infinitesimal unitary bialgebras of rooted forests, symmetric cocycles and pre-Lie algebras.J. Algebr. Comb. 53 (2021), 771-803. Zbl 1476.16041, MR 4258069, 10.1007/s10801-020-00942-7
Reference: [21] Zhelyabin, V. N.: Jordan bialgebras and their connection with Lie bialgebras.Algebra Logic 36 (1997), 1-15. Zbl 0935.17014, MR 1454688, 10.1007/BF02671949
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo