Previous |  Up |  Next

Article

Title: Triangulated categories of periodic complexes and orbit categories (English)
Author: Liu, Jian
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 3
Year: 2023
Pages: 765-792
Summary lang: English
.
Category: math
.
Summary: We investigate the triangulated hull of orbit categories of the perfect derived category and the bounded derived category of a ring concerning the power of the suspension functor. It turns out that the triangulated hull corresponds to the full subcategory of compact objects of certain triangulated categories of periodic complexes. This specializes to Stai and Zhao's result on the finite dimensional algebra of finite global dimension. As the first application, if $A$, $B$ are flat algebras over a commutative ring and they are derived equivalent, then the corresponding derived categories of $n$-periodic complexes are triangle equivalent. As the second application, we get the periodic version of the Koszul duality. (English)
Keyword: periodic complex
Keyword: orbit category
Keyword: triangulated hull
Keyword: derived category
Keyword: derived equivalence
Keyword: dg category
Keyword: Koszul duality
MSC: 16E45
MSC: 18E20
MSC: 18G35
MSC: 18G80
idZBL: Zbl 07729537
idMR: MR4632857
DOI: 10.21136/CMJ.2023.0234-22
.
Date available: 2023-08-11T14:23:34Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151774
.
Reference: [1] Avramov, L. L., Buchweitz, R.-O., Iyengar, S. B.: Class and rank of differential modules.Invent. Math. 169 (2007), 1-35. Zbl 1153.13010, MR 2308849, 10.1007/s00222-007-0041-6
Reference: [2] Avramov, L. L., Buchweitz, R.-O., Iyengar, S. B., Miller, C.: Homology of perfect complexes.Adv. Math. 223 (2010), 1731-1781. Zbl 1186.13006, MR 2592508, 10.1016/j.aim.2009.10.009
Reference: [3] Beilinson, A. A.: Coherent sheaves on $P^n$ and problems of linear algebra.Funkts. Anal. Prilozh. 12 (1978), 68-69 Russian. Zbl 0402.14006, MR 0509388
Reference: [4] Beilinson, A. A., Bernstein, J., Deligne, P.: Faisceaux pervers.Analysis and Topology on Singular Spaces. I Astérisque 100. Société mathématique de France, Paris (1982), 5-171 French. Zbl 0536.14011, MR 0751966
Reference: [5] Beilinson, A. A., Ginzburg, V., Soergel, W.: Koszul duality patterns in representation theory.J. Am. Math. Soc. 9 (1996), 473-527. Zbl 0864.17006, MR 1322847, 10.1090/S0894-0347-96-00192-0
Reference: [6] Benson, D. J., Iyengar, S. B., Krause, H.: Stratifying modular representations of finite groups.Ann. Math. (2) 174 (2011), 1643-1684. Zbl 1261.20057, MR 2846489, 10.4007/annals.2011.174.3.6
Reference: [7] Bernstein, I. N., Gel'fand, I. M., Gel'fand, S. I.: Algebraic vector bundles on $P^n$ and problems of linear algebra.Funkts. Anal. Prilozh. 12 (1978), 66-67 Russian. Zbl 0402.14005, MR 0509387
Reference: [8] Bökstedt, M., Neeman, A.: Homotopy limits in triangulated categories.Compos. Math. 86 (1993), 209-234. Zbl 0802.18008, MR 1214458
Reference: [9] Bruns, W., Herzog, J.: Cohen-Macaulay Rings.Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). Zbl 0909.13005, MR 1251956, 10.1017/CBO9780511608681
Reference: [10] Buchweitz, R.-O.: Maximal Cohen-Macaulay Modules and Tate Cohomology.Mathematical Surveys and Monographs 262. AMS, Providence (2021). Zbl 07498869, MR 4390795, 10.1090/surv/262
Reference: [11] Cartan, H., Eilenberg, S.: Homological Algebra.Princeton Mathematical Series 19. Princeton University Press, Princeton (1956). Zbl 0075.24305, MR 0077480
Reference: [12] Chen, X.-W., Liu, J., Wang, R.: Singular equivalences induced by bimodules and quadratic monomial algebras.(to appear) in Algebr. Represent. Theory. MR 4568856, 10.1007/s10468-021-10104-3
Reference: [13] Drinfeld, V.: DG quotients of DG categories.J. Algebra 272 (2004), 643-691. Zbl 1064.18009, MR 2028075, 10.1016/j.jalgebra.2003.05.001
Reference: [14] Eisenbud, D., Fløystad, G., Schreyer, F.-O.: Sheaf cohomology and free resolutions over exterior algebras.Trans. Am. Math. Soc. 355 (2003), 4397-4426. Zbl 1063.14021, MR 1990756, 10.1090/S0002-9947-03-03291-4
Reference: [15] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.De Gruyter Expositions in Mathematics 30. Walter De Gruyter, Berlin (2000). Zbl 0952.13001, MR 1753146, 10.1515/9783110803662
Reference: [16] Happel, D.: On the derived category of a finite-dimensional algebra.Comment. Math. Helv. 62 (1987), 339-389. Zbl 0626.16008, MR 0910167, 10.1007/BF02564452
Reference: [17] Iyengar, S. B., Krause, H.: Acyclicity versus total acyclicity for complexes over Noetherian rings.Doc. Math. 11 (2006), 207-240. Zbl 1119.13014, MR 2262932, 10.4171/dm/209
Reference: [18] Iyengar, S. B., Letz, J. C., Liu, J., Pollitz, J.: Exceptional complete intersection maps of local rings.Pac. J. Math. 318 (2022), 275-293. Zbl 07578612, MR 4474363, 10.2140/pjm.2022.318.275
Reference: [19] Kalck, M., Yang, D.: Derived categories of graded gentle one-cycle algebras.J. Pure Appl. Algebra 222 (2018), 3005-3035. Zbl 1410.16012, MR 3795632, 10.1016/j.jpaa.2017.11.011
Reference: [20] Keller, B.: Deriving DG categories.Ann. Sci. Éc. Norm. Supér. (4) 27 (1994), 63-102. Zbl 0799.18007, MR 1258406, 10.24033/asens.1689
Reference: [21] Keller, B.: On the cyclic homology of exact categories.J. Pure Appl. Algebra 136 (1999), 1-56. Zbl 0923.19004, MR 1667558, 10.1016/S0022-4049(97)00152-7
Reference: [22] Keller, B.: On triangulated orbit categories.Doc. Math. 10 (2005), 551-581. Zbl 1086.18006, MR 2184464, 10.4171/dm/199
Reference: [23] Keller, B.: Corrections to `On triangulated orbit categories'.Available at {\def\let \relax \brokenlink{https://webusers.imj-prg.fr/ bernhard.keller/publ/corrTriaOrbit.pdf}}\kern0pt (2009), 5 pages.
Reference: [24] Krause, H.: The stable derived category of a Noetherian scheme.Compos. Math. 141 (2005), 1128-1162. Zbl 1090.18006, MR 2157133, 10.1112/S0010437X05001375
Reference: [25] Krause, H.: Localization theory for triangulated categories.Triangulated Categories London Mathematical Society Lecture Note Series 375. Cambridge University Press, Cambridge (2010), 161-235. Zbl 1232.18012, MR 2681709, 10.1017/CBO9781139107075.005
Reference: [26] Neeman, A.: The connection between the $K$-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel.Ann. Sci. Éc. Norm. Supér. (4) 25 (1992), 547-566. Zbl 0868.19001, MR 1191736, 10.24033/asens.1659
Reference: [27] Neeman, A.: The Grothendieck duality theorem via Bousfield's techniques and Brown representability.J. Am. Math. Soc. 9 (1996), 205-236. Zbl 0864.14008, MR 1308405, 10.1090/S0894-0347-96-00174-9
Reference: [28] Neeman, A.: Triangulated Categories.Annals of Mathematics Studies 148. Princeton University Press, Princeton (2001). Zbl 0974.18008, MR 1812507, 10.1515/9781400837212
Reference: [29] Orlov, D.: Derived categories of coherent sheaves and triangulated categories of singularities.Algebra, Arithmetic, and Geometry. Volume II Progress in Mathematics 270. Birkhäuser, Boston (2009), 503-531. Zbl 1200.18007, MR 2641200, 10.1007/978-0-8176-4747-6_16
Reference: [30] Peng, L., Xiao, J.: Root categories and simple Lie algebras.J. Algebra 198 (1997), 19-56. Zbl 0893.16007, MR 1482975, 10.1006/jabr.1997.7152
Reference: [31] Peng, L., Xiao, J.: Triangulated categories and Kac-Moody algebras.Invent. Math. 140 (2000), 563-603. Zbl 0966.16006, MR 1760751, 10.1007/s002220000062
Reference: [32] Rickard, J.: Morita theory for derived categories.J. Lond. Math. Soc., II. Ser. 39 (1989), 436-456. Zbl 0642.16034, MR 1002456, 10.1112/jlms/s2-39.3.436
Reference: [33] Rickard, J.: Derived equivalences as derived functors.J. Lond. Math. Soc., II. Ser. 43 (1991), 37-48. Zbl 0683.16030, MR 1099084, 10.1112/jlms/s2-43.1.37
Reference: [34] Ringel, C. M., Zhang, P.: Representations of quivers over the algebra of dual numbers.J. Algebra 475 (2017), 327-360. Zbl 1406.16010, MR 3612474, 10.1016/j.jalgebra.2016.12.001
Reference: [35] Stai, T.: The triangulated hull of periodic complexes.Math. Res. Lett. 25 (2018), 199-236. Zbl 1427.16005, MR 3818620, 10.4310/MRL.2018.v25.n1.a9
Reference: [36] Tang, X., Huang, Z.: Higher differential objects in additive categories.J. Algebra 549 (2020), 128-164. Zbl 1432.18009, MR 4050670, 10.1016/j.jalgebra.2019.12.011
Reference: [37] Zhao, X.: A note on the equivalence of $m$-periodic derived categories.Sci. China, Math. 57 (2014), 2329-2334. Zbl 1304.18029, MR 3266493, 10.1007/s11425-014-4852-9
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo