Previous |  Up |  Next

Article

Title: Regularity of powers of binomial edge ideals of complete multipartite graphs (English)
Author: Wang, Hong
Author: Tang, Zhongming
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 3
Year: 2023
Pages: 793-810
Summary lang: English
.
Category: math
.
Summary: Let $G=K_{n_1,n_2,\ldots ,n_r}$ be a complete multipartite graph on $[n]$ with $n>r>1$ and $J_G$ being its binomial edge ideal. It is proved that the Castelnuovo-Mumford regularity ${\rm reg}(J^t_G)$ is $2t+1$ for any positive integer $t$. (English)
Keyword: Castelnuovo-Mumford regularity
Keyword: binomial edge ideal
Keyword: multipartite graph
MSC: 05E40
MSC: 13D02
idZBL: Zbl 07729538
idMR: MR4632858
DOI: 10.21136/CMJ.2023.0246-22
.
Date available: 2023-08-11T14:24:00Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151775
.
Reference: [1] Bruns, W., Vetter, U.: Determinantal Rings.Lecture Notes in Mathematics 1327. Sprin-ger, Berlin (1988). Zbl 0673.13006, MR 0986492, 10.1007/BFb0080378
Reference: [2] Conca, A.: Gröbner bases of powers of ideals of maximal minors.J. Pure Appl. Algebra 121 (1997), 223-231. Zbl 0899.13013, MR 1477608, 10.1016/S0022-4049(96)00061-8
Reference: [3] Dao, H., Huneke, C., Schweig, J.: Bounds on the regularity and projective dimension of ideals associated to graphs.J. Algebr. Comb. 38 (2013), 37-55. Zbl 1307.13021, MR 3070118, 10.1007/s10801-012-0391-z
Reference: [4] Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry.Graduate Texts in Mathematics 150. Springer, New York (1995). Zbl 0819.13001, MR 1322960, 10.1007/978-1-4612-5350-1
Reference: [5] Ene, V., Rinaldo, G., Terai, N.: Powers of binomial edge ideals with quadratic Gröbner bases.Nagoya Math. J. 246 (2022), 233-255. Zbl 07531012, MR 4425287, 10.1017/nmj.2021.1
Reference: [6] Herzog, J., Hibi, T.: Monomial Ideals.Graduate Texts in Mathematics 260. Springer, London (2011). Zbl 1206.13001, MR 2724673, 10.1007/978-0-85729-106-6
Reference: [7] Herzog, J., Hibi, T., Hreinsdóttir, F., Kahle, T., Rauh, J.: Binomial edge ideals and conditional independence statements.Adv. Appl. Math. 45 (2010), 317-333. Zbl 1196.13018, MR 2669070, 10.1016/j.aam.2010.01.003
Reference: [8] Herzog, J., Hibi, T., Ohsugi, H.: Binomial Ideals.Graduate Texts in Mathematics 279. Springer, Cham (2018). Zbl 1403.13004, MR 3838370, 10.1007/978-3-319-95349-6
Reference: [9] Hoa, L. T., Tam, N. D.: On some invariants of a mixed product of ideals.Arch. Math. 94 (2010), 327-337. Zbl 1191.13032, MR 2643966, 10.1007/s00013-010-0112-6
Reference: [10] Jayanthan, A. V., Kumar, A., Sarkar, R.: Regularity of powers of quadratic sequences with applications to binomial ideals.J. Algebra 564 (2020), 98-118. Zbl 1444.13020, MR 4137693, 10.1016/j.jalgebra.2020.08.004
Reference: [11] Ohtani, M.: Graphs and ideals generated by some 2-minors.Commun. Algebra 39 (2011), 905-917. Zbl 1225.13028, MR 2782571, 10.1080/00927870903527584
Reference: [12] Ohtani, M.: Binomial edge ideals of complete multipartite graphs.Commun. Algebra 41 (2013), 3858-3867. Zbl 1406.13026, MR 3169495, 10.1080/00927872.2012.680219
Reference: [13] Madani, S. Saeedi, Kiani, D.: Binomial edge ideals of graphs.Electron. J. Combin. 19 (2012), Article ID 44, 6 pages. Zbl 1262.13012, MR 2946102, 10.37236/2349
Reference: [14] Madani, S. Saeedi, Kiani, D.: Binomial edge ideals of regularity 3.J. Algebra 515 (2018), 157-172. Zbl 1403.13028, MR 3859963, 10.1016/j.jalgebra.2018.08.027
Reference: [15] Schenzel, P., Zafar, S.: Algebraic properties of the binomial edge ideal of a complete bipartite graph.An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 22 (2014), 217-237. Zbl 1313.05363, MR 3195706, 10.2478/auom-2014-0043
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo