Title: | On $k$-free numbers over Beatty sequences (English) |
Author: | Zhang, Wei |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 73 |
Issue: | 3 |
Year: | 2023 |
Pages: | 839-847 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We consider $k$-free numbers over Beatty sequences. New results are given. In particular, for a fixed irrational number $\alpha >1$ of finite type $\tau <\infty $ and any constant $\varepsilon >0$, we can show that $$ \sum _{ 1\leq n\leq x \atop [\alpha n+\beta ]\in \mathcal {Q}_{k}} 1- \frac {x}{ \zeta (k)} \ll x^{k/(2k-1)+\varepsilon }+x^{1-1/(\tau +1)+\varepsilon }, $$ where $\mathcal {Q}_{k}$ is the set of positive $k$-free integers and the implied constant depends only on $\alpha ,$ $\varepsilon ,$ $k$ and $\beta .$ This improves previous results. The main new ingredient of our idea is employing double exponential sums of the type $$ \sum _{1\leq h\leq H}\sum _{ 1\leq n\leq x \atop n\in \mathcal {Q}_{k}}e(\vartheta hn). $$ (English) |
Keyword: | $k$-free number |
Keyword: | exponential sum |
Keyword: | Beatty sequence |
MSC: | 11B83 |
MSC: | 11L07 |
idZBL: | Zbl 07729540 |
idMR: | MR4632860 |
DOI: | 10.21136/CMJ.2023.0304-22 |
. | |
Date available: | 2023-08-11T14:25:03Z |
Last updated: | 2023-09-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151777 |
. | |
Reference: | [1] Abercrombie, A. G., Banks, W. D., Shparlinski, I. E.: Arithmetic functions on Beatty sequences.Acta Arith. 136 (2009), 81-89. Zbl 1227.11045, MR 2469945, 10.4064/aa136-1-6 |
Reference: | [2] Banks, W. D., Shparlinski, I. E.: Short character sums with Beatty sequences.Math. Res. Lett. 13 (2006), 539-547. Zbl 1220.11097, MR 2250489, 10.4310/MRL.2006.v13.n4.a4 |
Reference: | [3] Banks, W. D., Yeager, A. M.: Carmichael numbers composed of primes from a Beatty sequence.Colloq. Math. 125 (2011), 129-137. Zbl 1276.11151, MR 2860586, 10.4064/cm125-1-9 |
Reference: | [4] Brüdern, J., Perelli, A.: Exponential sums and additive problems involving square-free numbers.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 591-613. Zbl 1019.11028, MR 1760532 |
Reference: | [5] Dimitrov, S. I.: On the distribution of consecutive square-free numbers of the form $\lfloor\alpha n\rfloor,\lfloor\alpha n\rfloor+1$.Proc. Jangjeon Math. Soc. 22 (2019), 463-470. Zbl 1428.11163, MR 3994243 |
Reference: | [6] Goryashin, D. V.: Squarefree numbers in the sequence $\lfloor \alpha n\rfloor$.Chebyshevskii Sb. 14 (2013), 42-48 Russian. Zbl 1430.11130, 10.22405/2226-8383-2017-18-4-97-105 |
Reference: | [7] Güloğlu, A. M., Nevans, C. W.: Sums of multiplicative functions over a Beatty sequence.Bull. Aust. Math. Soc. 78 (2008), 327-334. Zbl 1228.11151, MR 2466868, 10.1017/S0004972708000853 |
Reference: | [8] Iwaniec, H., Kowalski, E.: Analytic Number Theory.American Mathematical Society Colloquium Publications 53. AMS, Providence (2004). Zbl 1059.11001, MR 2061214, 10.1090/coll/053 |
Reference: | [9] Kim, V., Srichan, T., Mavecha, S.: On $r$-free integers in Beatty sequences.Bol. Soc. Mat. Mex., III. Ser. 28 (2022), Article ID 28, 10 pages. Zbl 07493131, MR 4395131, 10.1007/s40590-022-00422-x |
Reference: | [10] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences.Pure and Applied Mathematics. John Wiley & Sons, New York (1974). Zbl 0281.10001, MR 0419394 |
Reference: | [11] Technau, M., Zafeiropoulos, A.: Metric results on summatory arithmetic functions on Beatty sets.Acta Arith. 197 (2021), 93-104. Zbl 1465.11077, MR 4185917, 10.4064/aa200128-10-6 |
Reference: | [12] Tolev, D. I.: On the exponential sum with square-free numbers.Bull. Lond. Math. Soc. 37 (2005), 827-834. Zbl 1099.11042, MR 2186715, 10.1112/S0024609305004753 |
Reference: | [13] Vinogradov, I. M.: The Method of Trigonometrical Sums in the Theory of Numbers.Dover, Mineola (2004). Zbl 1093.11001, MR 2104806 |
. |
Fulltext not available (moving wall 24 months)