Title: | Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space (English) |
Author: | Choi, Jae Gil |
Author: | Shim, Sang Kil |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 73 |
Issue: | 3 |
Year: | 2023 |
Pages: | 849-868 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We study a conditional Fourier-Feynman transform (CFFT) of functionals on an abstract Wiener space $(H,B,\nu )$. An infinite dimensional conditioning function is used to define the CFFT. To do this, we first present a short survey of the conditional Wiener integral concerning the topic of this paper. We then establish evaluation formulas for the conditional Wiener integral on the abstract Wiener space $B$. Using the evaluation formula, we next provide explicit formulas for CFFTs of functionals in the Kallianpur and Bromley Fresnel class $\mathcal F(B)$ and we finally investigate some Fubini theorems involving CFFT. (English) |
Keyword: | abstract Wiener space |
Keyword: | conditional Wiener integral |
Keyword: | conditional Fourier-Feynman transform |
Keyword: | Fubini theorem |
MSC: | 28C20 |
MSC: | 42B10 |
MSC: | 46B09 |
MSC: | 46G12 |
idZBL: | Zbl 07729541 |
idMR: | MR4632861 |
DOI: | 10.21136/CMJ.2023.0310-22 |
. | |
Date available: | 2023-08-11T14:25:55Z |
Last updated: | 2023-09-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151778 |
. | |
Reference: | [1] Ahn, J. M., Chang, K. S., Kim, B. S., Yoo, I.: Fourier-Feynman transform, convolution product and first variation.Acta. Math. Hung. 100 (2003), 215-235. Zbl 1096.28009, MR 1990183, 10.1023/A:1025041525913 |
Reference: | [2] Breiman, L.: Probability.Addison-Wesley Series in Statistics. Addison-Wesley, Reading (1968). Zbl 0174.48801, MR 0229267 |
Reference: | [3] Brue, M. D.: A Functional Transform for Feynman Integrals Similar to the Fourier Transform: Ph. D. Thesis.University of Minnesota, Minneapolis (1972). MR 2622178 |
Reference: | [4] Cameron, R. H., Storvick, D. A.: An operator valued function space integral and a related integral equation.J. Math. Mech. 18 (1968), 517-552. Zbl 0186.20701, MR 0236347, 10.1512/iumj.1969.18.18041 |
Reference: | [5] Cameron, R. H., Storvick, D. A.: An integral equation related to the Schrödinger equation with an application to integration in function space.Problems in Analysis Princeton University Press, Princeton (1970), 175-193. Zbl 0215.19101, MR 0348071, 10.1515/9781400869312-012 |
Reference: | [6] Cameron, R. H., Storvick, D. A.: An operator-valued function-space integral applied to integrals of functions of class $L_1$.Proc. Lond. Math. Soc., Ser. III 27 (1973), 345-360. Zbl 0264.28005, MR 0342674, 10.1112/plms/s3-27.2.345 |
Reference: | [7] Cameron, R. H., Storvick, D. A.: An operator valued function space integral applied to integrals of functions of class $L_2$.J. Math. Anal. Appl. 42 (1973), 330-372. Zbl 0256.46055, MR 0320264, 10.1016/0022-247X(73)90142-X |
Reference: | [8] Cameron, R. H., Storvick, D. A.: An $L_2$ analytic Fourier-Feynman transform.Mich. Math. J. 23 (1976), 1-30. Zbl 0382.42008, MR 0404571, 10.1307/mmj/1029001617 |
Reference: | [9] Chang, K. S., Chang, J. S.: Evaluation of some conditional Wiener integrals.Bull. Korean Math. Soc. 21 (1984), 99-106. Zbl 0576.28023, MR 0768465 |
Reference: | [10] Chang, K. S., Kim, B. S., Yoo, I.: Fourier-Feynman transform, convolution and first variation of functionals on abstract Wiener space.Integral Transforms Spec. Funct. 10 (2000), 179-200. Zbl 0973.28011, MR 1811008, 10.1080/10652460008819285 |
Reference: | [11] Chang, K. S., Song, T. S., Yoo, I.: Analytic Fourier-Feynman transform and first variation on abstract Wiener space.J. Korean Math. Soc. 38 (2001), 485-501. Zbl 1033.28007, MR 1817632 |
Reference: | [12] Chang, S. J., Park, C., Skoug, D.: Translation theorems for Fourier-Feynman transforms and conditional Fourier-Feynman transforms.Rocky Mt. J. Math. 30 (2000), 477-496. Zbl 1034.28008, MR 1786993, 10.1216/rmjm/1022009276 |
Reference: | [13] Chung, D. M.: Scale-invariant measurability in abstract Wiener spaces.Pac. J. Math. 130 (1987), 27-40. Zbl 0634.28007, MR 0910652, 10.2140/pjm.1987.130.27 |
Reference: | [14] Chung, D. M., Kang, S. J.: Conditional Wiener integrals and an integral equation.J. Korean Math. Soc. 25 (1988), 37-52. Zbl 0655.28008, MR 0950810 |
Reference: | [15] Chung, D. M., Kang, S. J.: Evaluation formulas for conditional abstract Wiener integrals.Stochastic Anal. Appl. 7 (1989), 125-144. Zbl 0673.60006, MR 0997275, 10.1080/07362998908809173 |
Reference: | [16] Chung, D. M., Kang, S. J.: Evaluation of some conditional abstract Wiener integrals.Bull. Korean Math. Soc. 26 (1989), 151-158. Zbl 0692.28006, MR 1028364 |
Reference: | [17] Chung, D. M., Kang, S. J.: Evaluation formulas for conditional abstract Wiener integrals. II.J. Korean Math. Soc. 27 (1990), 137-144. Zbl 0719.60008, MR 1087416 |
Reference: | [18] Chung, D. M., Park, C., Skoug, D.: Generalized Feynman integrals via conditional Feynman integrals.Mich. Math. J. 40 (1993), 377-391. Zbl 0799.60049, MR 1226837, 10.1307/mmj/1029004758 |
Reference: | [19] Chung, D. M., Skoug, D.: Conditional analytic Feynman integrals and a related Schrö-dinger integral equation.SIAM J. Math. Anal. 20 (1989), 950-965. Zbl 0678.28007, MR 1000731, 10.1137/0520064 |
Reference: | [20] Cohn, D. L.: Measure Theory.Birkhäuser Advanced Texts. Basler Lehrbücher. Birkhäu-ser, New York (2013). Zbl 1292.28002, MR 3098996, 10.1007/978-1-4614-6956-8 |
Reference: | [21] Doob, J. L.: Stochastic Processes.John Wiley, New York (1953). Zbl 0053.26802, MR 0058896 |
Reference: | [22] Gross, L.: Abstract Wiener spaces.Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Volume 2. Contributions to Probability Theory, Part 1 University of California Press, Berkeley (1967), 31-42. Zbl 0187.40903, MR 0212152 |
Reference: | [23] Gross, L.: Potential theory on Hilbert space.J. Funct. Anal. 1 (1967), 123-181. Zbl 0165.16403, MR 0227747, 10.1016/0022-1236(67)90030-4 |
Reference: | [24] Huffman, T., Park, C., Skoug, D.: Analytic Fourier-Feynman transforms and convolution.Trans. Am. Math. Soc. 347 (1995), 661-673. Zbl 0880.28011, MR 1242088, 10.1090/S0002-9947-1995-1242088-7 |
Reference: | [25] Huffman, T., Park, C., Skoug, D.: Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals.Mich. Math. J. 43 (1996), 247-261. Zbl 0864.28007, MR 1398153, 10.1307/mmj/1029005461 |
Reference: | [26] Huffman, T., Park, C., Skoug, D.: Convolution and Fourier-Feynman transforms.Rocky Mt. J. Math. 27 (1997), 827-841. Zbl 0901.28010, MR 1490278, 10.1216/rmjm/1181071896 |
Reference: | [27] Huffman, T., Park, C., Skoug, D.: Generalized transforms and convolutions.Int. J. Math. Math. Sci. 20 (1997), 19-32. Zbl 0982.28011, MR 1431419, 10.1155/S0161171297000045 |
Reference: | [28] Huffman, T., Skoug, D., Storvick, D.: Integration formulas involving Fourier-Feynman transforms via a Fubini theorem.J. Korean Math. Soc. 38 (2001), 421-435. Zbl 1034.28009, MR 1817629 |
Reference: | [29] Johnson, G. W., Skoug, D. L.: The Cameron-Storvick function space integral: The $L_1$ theory.J. Math. Anal. Appl. 50 (1975), 647-667. Zbl 0308.28006, MR 0374368, 10.1016/0022-247X(75)90017-7 |
Reference: | [30] Johnson, G. W., Skoug, D. L.: The Cameron-Storvick function space integral: An $L(L_p, L_{p'})$ theory.Nagoya Math. J. 60 (1976), 93-137. Zbl 0314.28010, MR 0407228, 10.1017/S0027763000017189 |
Reference: | [31] Johnson, G. W., Skoug, D. L.: An $L_p$ analytic Fourier-Feynman transform.Mich. Math. J. 26 (1979), 103-127. Zbl 0409.28007, MR 0514964, 10.1307/mmj/1029002166 |
Reference: | [32] Johnson, G. W., Skoug, D. L.: Notes on the Feynman integral. III: Schrödinger equation.Pac. J. Math. 105 (1983), 321-358. Zbl 0459.28013, MR 0691608, 10.2140/pjm.1983.105.321 |
Reference: | [33] Kac, M.: On distribution of certain Wiener integrals.Trans. Am. Math. Soc. 65 (1949), 1-13. Zbl 0032.03501, MR 0027960, 10.1090/S0002-9947-1949-0027960-X |
Reference: | [34] Kallianpur, G., Bromley, C.: Generalized Feynman integrals using analytic continuation in several complex variables.Stochastic Analysis and Applications Advances in Probability and Related Topics 7. Marcel Dekker, New York (1984), 217-267. Zbl 0554.60061, MR 0776983 |
Reference: | [35] Kallianpur, G., Kannan, D., Karandikar, R. L.: Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces, and a Cameron-Martin formula.Ann. Inst. Henri Poincaré, Probab. Stat. 21 (1985), 323-361. Zbl 0583.60049, MR 0823080 |
Reference: | [36] Kim, B. S., Yoo, I., Cho, D. H.: Fourier-Feynman transforms of unbounded functionals on abstract Wiener space.Cent. Eur. J. Math. 8 (2010), 616-632. Zbl 1204.28022, MR 2653665, 10.2478/s11533-010-0019-2 |
Reference: | [37] Kuo, H.-H.: Gaussian Measures in Banach Spaces.Lecture Notes in Mathematics 463. Springer, Berlin (1975). Zbl 0306.28010, MR 0461643, 10.1007/BFb0082007 |
Reference: | [38] Kuo, H.-H.: Introduction to Stochastic Integration.Universitext. Springer, New York (2006). Zbl 1101.60001, MR 2180429, 10.1007/0-387-31057-6 |
Reference: | [39] Paley, R. E. A. C., Wiener, N., Zygmund, A.: Notes on random functions.Math. Z. 37 (1933), 647-668. Zbl 0007.35402, MR 1545426, 10.1007/BF01474606 |
Reference: | [40] Park, C.: A generalized Paley-Wiener-Zygmund integral and its applications.Proc. Am. Math. Soc. 23 (1969), 388-400. Zbl 0186.20602, MR 0245752, 10.1090/S0002-9939-1969-0245752-1 |
Reference: | [41] Park, C., Skoug, D.: A note on Paley-Wiener-Zygmund stochastic integrals.Proc. Am. Math. Soc. 103 (1988), 591-601. Zbl 0662.60063, MR 0943089, 10.1090/S0002-9939-1988-0943089-8 |
Reference: | [42] Park, C., Skoug, D.: A simple formula for conditional Wiener integrals with applications.Pac. J. Math. 135 (1988), 381-394. Zbl 0655.28007, MR 0968620, 10.2140/pjm.1988.135.381 |
Reference: | [43] Park, C., Skoug, D.: A Kac-Feynman integral equation for conditional Wiener integrals.J. Integral Equations Appl. 3 (1991), 411-427. Zbl 0751.45003, MR 1142961, 10.1216/jiea/1181075633 |
Reference: | [44] Park, C., Skoug, D.: Conditional Wiener integrals. II.Pac. J. Math. 167 (1995), 293-312. Zbl 0868.28007, MR 1328331, 10.2140/pjm.1995.167.293 |
Reference: | [45] Park, C., Skoug, D.: Conditional Fourier-Feynman transforms and conditional convolution products.J. Korean Math. Soc. 38 (2001), 61-76. Zbl 1015.28016, MR 1808662 |
Reference: | [46] Park, C., Skoug, D., Storvick, D.: Fourier-Feynman transforms and the first variation.Rend. Circ. Mat. Palermo, II. Ser. 47 (1998), 277-292. Zbl 0907.28008, MR 1633487, 10.1007/BF02844368 |
Reference: | [47] Park, C., Skoug, D., Storvick, D.: Relationships among the first variation, the convolution product, and the Fourier-Feynman transform.Rocky Mt. J. Math. 28 (1998), 1447-1468. Zbl 0934.28008, MR 1681677, 10.1216/rmjm/1181071725 |
Reference: | [48] Rudin, W.: Real and Complex Analysis.McGraw-Hill, New York (1987). Zbl 0925.00005, MR 0924157 |
Reference: | [49] Skoug, D., Storvick, D.: A survey of results involving transforms and convolutions in function space.Rocky Mt. J. Math. 34 (2004), 1147-1175. Zbl 1172.42308, MR 2087452, 10.1216/rmjm/1181069848 |
Reference: | [50] Tucker, H. G.: A Graduate Course in Probability.Probability and Mathematical Statistics 2. Academic Press, New York (1967). Zbl 0159.45702, MR 0221541 |
Reference: | [51] Yeh, J.: Stochastic Processes and the Wiener Integral.Pure and Applied Mathematics 13. Marcel Dekker, New York (1973). Zbl 0277.60018, MR 0474528 |
Reference: | [52] Yeh, J.: Inversion of conditional expectations.Pac. J. Math. 52 (1974), 631-640. Zbl 0323.60003, MR 0365644, 10.2140/pjm.1974.52.631 |
Reference: | [53] Yeh, J.: Inversion of conditional Wiener integrals.Pac. J. Math. 59 (1975), 623-638. Zbl 0365.60073, MR 0390162, 10.2140/pjm.1975.59.623 |
. |
Fulltext not available (moving wall 24 months)