Previous |  Up |  Next

Article

Title: Ding projective and Ding injective modules over trivial ring extensions (English)
Author: Mao, Lixin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 3
Year: 2023
Pages: 903-919
Summary lang: English
.
Category: math
.
Summary: Let $R\ltimes M$ be a trivial extension of a ring $R$ by an $R$-$R$-bimodule $M$ such that $M_{R}$, $_{R}M$, $(R,0)_{R\ltimes M}$ and $_{R\ltimes M}(R,0)$ have finite flat dimensions. We prove that $(X,\alpha )$ is a Ding projective left $R\ltimes M$-module if and only if the sequence $M\otimes _R M\otimes _R X\stackrel {M\otimes \alpha }\longrightarrow M\otimes _R X\stackrel {\alpha }\rightarrow X$ is exact and ${\rm coker}(\alpha )$ is a Ding projective left $R$-module. Analogously, we explicitly describe Ding injective $R\ltimes M$-modules. As applications, we characterize Ding projective and Ding injective modules over Morita context rings with zero bimodule homomorphisms. (English)
Keyword: trivial extension
Keyword: Ding projective module
Keyword: Ding injective module
MSC: 16D40
MSC: 16D50
MSC: 16E05
idZBL: Zbl 07729544
idMR: MR4632864
DOI: 10.21136/CMJ.2023.0351-22
.
Date available: 2023-08-11T14:28:09Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151781
.
Reference: [1] Auslander, M., Bridger, M.: Stable Module Theory.Memoirs of the American Mathematical Society 94. AMS, Providence (1969). Zbl 0204.36402, MR 0269685, 10.1090/memo/0094
Reference: [2] Ding, N., Li, Y., Mao, L.: Strongly Gorenstein flat modules.J. Aust. Math. Soc. 86 (2009), 323-338. Zbl 1200.16010, MR 2529328, 10.1017/S1446788708000761
Reference: [3] Enochs, E. E., Cortés-Izurdiaga, M., Torrecillas, B.: Gorenstein conditions over triangular matrix rings.J. Pure Appl. Algebra 218 (2014), 1544-1554. Zbl 1312.16023, MR 3175039, 10.1016/j.jpaa.2013.12.006
Reference: [4] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules.Math. Z. 220 (1995), 611-633. Zbl 0845.16005, MR 1363858, 10.1007/BF02572634
Reference: [5] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). Zbl 0952.13001, MR 1753146, 10.1515/9783110803662
Reference: [6] Fieldhouse, D. J.: Character modules, dimension and purity.Glasg. Math. J. 13 (1972), 144-146. Zbl 0258.16028, MR 313319, 10.1017/S0017089500001567
Reference: [7] Fossum, R. M., Griffith, P. A., Reiten, I.: Trivial Extensions of Abelian Categories: Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory.Lecture Notes in Mathematics 456. Springer, Berlin (1975). Zbl 0303.18006, MR 0389981, 10.1007/BFb0065404
Reference: [8] Gillespie, J.: Model structures on modules over Ding-Chen rings.Homology Homotopy Appl. 12 (2010), 61-73. Zbl 1231.16005, MR 2607410, 10.4310/HHA.2010.v12.n1.a6
Reference: [9] Green, E. L.: On the representation theory of rings in matrix form.Pac. J. Math. 100 (1982), 123-138. Zbl 0502.16016, MR 661444, 10.2140/pjm.1982.100.123
Reference: [10] Haghany, A., Mazrooei, M., Vedadi, M. R.: Pure projectivity and pure injectivity over formal triangular matrix rings.J. Algebra Appl. 11 (2012), Article ID 1250107, 13 pages. Zbl 1280.16002, MR 2997449, 10.1142/S0219498812501071
Reference: [11] Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions.J. Pure Appl. Algebra 205 (2006), 423-445. Zbl 1094.13021, MR 2203625, 10.1016/j.jpaa.2005.07.010
Reference: [12] Krylov, P., Tuganbaev, A.: Formal Matrices.Algebra and Applications 23. Springer, Cham (2017). Zbl 1367.16001, MR 3642603, 10.1007/978-3-319-53907-2
Reference: [13] Lam, T. Y.: Lectures on Modules and Rings.Graduate Texts in Mathematics 189. Springer, New York (1999). Zbl 0911.16001, MR 1653294, 10.1007/978-1-4612-0525-8
Reference: [14] Löfwall, C.: The global homological dimensions of trivial extensions of rings.J. Algebra 39 (1976), 287-307. Zbl 0325.16022, MR 0409608, 10.1016/0021-8693(76)90078-8
Reference: [15] Mahdou, N., Ouarghi, K.: Gorenstein dimensions in trivial ring extensions.Commutative Algebra and its Applications Walter de Gruyter, Berlin (2009), 291-299. Zbl 1177.13033, MR 2606294, 10.1515/9783110213188.291
Reference: [16] Mao, L.: Ding modules and dimensions over formal triangular matrix rings.Rend. Semin. Mat. Univ. Padova 148 (2022), 1-22. MR 4542370, 10.4171/RSMUP/100
Reference: [17] Mao, L.: Homological properties of trivial ring extensions.(to appear) in J. Algebra Appl. 10.1142/S0219498823502651
Reference: [18] Mao, L., Ding, N.: Gorenstein FP-injective and Gorenstein flat modules.J. Algebra Appl. 7 (2008), 491-506. Zbl 1165.16004, MR 2442073, 10.1142/S0219498808002953
Reference: [19] Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition.Sci. Rep. Tokyo Kyoiku Diagaku, Sect. A 6 (1958), 83-142. Zbl 0080.25702, MR 0096700
Reference: [20] Nagata, M.: Local Rings.Interscience Tracts in Pure and Applied Mathematics 13. Interscience, New York (1962). Zbl 0123.03402, MR 0155856
Reference: [21] Palmér, I., Roos, J.-E.: Explicit formulae for the global homological dimensions of trivial extensions of rings.J. Algebra 27 (1973), 380-413. Zbl 0269.16019, MR 0376766, 10.1016/0021-8693(73)90113-0
Reference: [22] Reiten, I.: Trivial Extensions and Gorenstein Rings: Thesis.University of Illinois, Urbana (1971). MR 2621542
Reference: [23] Rotman, J. J.: An Introduction to Homological Algebra.Pure and Applied Mathematics 85. Academic Press, New York (1979). Zbl 0441.18018, MR 538169
Reference: [24] Stenström, B.: Coherent rings and FP-injective modules.J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. Zbl 0194.06602, MR 258888, 10.1112/jlms/s2-2.2.323
Reference: [25] Yang, G.: Homological properties of modules over Ding-Chen rings.J. Korean Math. Soc. 49 (2012), 31-47. Zbl 1247.16006, MR 2907540, 10.4134/JKMS.2012.49.1.031
Reference: [26] Yang, G., Liu, Z., Liang, L.: Ding projective and Ding injective modules.Algebra Colloq. 20 (2013), 601-612. Zbl 1280.16003, MR 3116789, 10.1142/S1005386713000576
Reference: [27] Zhang, P.: Gorenstein-projective modules and symmetric recollements.J. Algebra 388 (2013), 65-80. Zbl 1351.16012, MR 3061678, 10.1016/j.jalgebra.2013.05.008
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo