Previous |  Up |  Next

Article

Title: Equations for the set of overrings of normal rings and related ring extensions (English)
Author: Ben Nasr, Mabrouk
Author: Jaballah, Ali
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 3
Year: 2023
Pages: 921-935
Summary lang: English
.
Category: math
.
Summary: We establish several finiteness characterizations and equations for the cardinality and the length of the set of overrings of rings with nontrivial zero divisors and integrally closed in their total ring of fractions. Similar properties are also obtained for related extensions of commutative rings that are not necessarily integral domains. Numerical characterizations are obtained for rings with some finiteness conditions afterwards. (English)
Keyword: total ring of fractions
Keyword: ring extension
Keyword: intermediate ring
Keyword: overring
Keyword: finite direct product
Keyword: FIP extension
Keyword: FCP extension
Keyword: integrally closed
Keyword: integral domain
Keyword: Prüfer domain
Keyword: valuation domain
Keyword: normal pair
Keyword: normal ring
Keyword: length of ring extension
Keyword: number of intermediate ring
Keyword: number of overring
MSC: 13B02
MSC: 13B22
MSC: 13B30
MSC: 13E15
MSC: 13E99
MSC: 13F05
MSC: 13G05
idZBL: Zbl 07729545
idMR: MR4632865
DOI: 10.21136/CMJ.2023.0358-22
.
Date available: 2023-08-11T14:29:01Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151782
.
Reference: [1] Anderson, D. D., Dobbs, D. E., Mullins, B.: The primitive element theorem for commutative algebras.Houston J. Math. 25 (1999), 603-623 corrigendum ibid 28 2002 217-219. Zbl 0999.13003, MR 1829123
Reference: [2] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings.Math. Z. 225 (1997), 49-65. Zbl 0868.13007, MR 1451331, 10.1007/PL00004598
Reference: [3] Badawi, A., Jaballah, A.: Some finiteness conditions on the set of overrings of a $\phi$-ring.Houston J. Math. 34 (2008), 397-408. Zbl 1143.13010, MR 2417400
Reference: [4] Bastida, E., Gilmer, R.: Overrings and divisorial ideals of rings of the form $D+M$.Mich. Math. J. 20 (1973), 79-95. Zbl 0239.13001, MR 0323782, 10.1307/mmj/1029001014
Reference: [5] Nasr, M. Ben: On finiteness of chains of intermediate rings.Monatsh. Math. 158 (2009), 97-102. Zbl 1180.13008, MR 2525924, 10.1007/s00605-008-0090-y
Reference: [6] Nasr, M. Ben: An answer to a problem about the number of overrings.J. Algebra Appl. 15 (2016), Article ID 1650022, 8 pages. Zbl 1335.13006, MR 3479800, 10.1142/S0219498816500225
Reference: [7] Nasr, M. Ben, Jaballah, A.: Counting intermediate rings in normal pairs.Expo. Math. 26 (2008), 163-175. Zbl 1142.13004, MR 2413833, 10.1016/j.exmath.2007.09.002
Reference: [8] Nasr, M. Ben, Jaballah, A.: The number of intermediate rings in FIP extension of integral domains.J. Algebra Appl. 19 (2020), Article ID 2050171, 12 pages. Zbl 1451.13023, MR 4136742, 10.1142/S0219498820501716
Reference: [9] Nasr, M. Ben, Jarboui, N.: New results about normal pairs of rings with zero-divisors.Ric. Mat. 63 (2014), 149-155. Zbl 1301.13008, MR 3211064, 10.1007/s11587-013-0169-1
Reference: [10] Nasr, M. Ben, Zeidi, N.: A special chain theorem in the set of intermediate rings.J. Algebra Appl. 16 (2017), Articles ID 1750185, 11 pages. Zbl 1390.13028, MR 3703540, 10.1142/S0219498817501857
Reference: [11] Nasr, M. Ben, Zeidi, N.: When is the integral closure comparable to all intermediate rings.Bull. Aust. Math. Soc. 95 (2017), 14-21. Zbl 1365.13011, MR 3592540, 10.1017/S0004972716000721
Reference: [12] Davis, E. D.: Overrings of commutative rings. III: Normal pairs.Trans. Am. Math. Soc. 182 (1973), 175-185. Zbl 0272.13004, MR 0325599, 10.1090/S0002-9947-1973-0325599-3
Reference: [13] Dobbs, D. E., Mullins, B., Picavet, G., Picavet-L'Hermitte, M.: On the FIP property for extensions of commutative rings.Commun. Algebra 33 (2005), 3091-3119. Zbl 1120.13009, MR 2175382, 10.1081/AGB-200066123
Reference: [14] Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M.: Characterizing the ring extensions that satisfy FIP or FCP.J. Algebra 371 (2012), 391-429. Zbl 1271.13022, MR 2975403, 10.1016/j.jalgebra.2012.07.055
Reference: [15] Dobbs, D. E., Shapiro, J.: Normal pairs with zero-divisors.J. Algebra Appl. 10 (2011), 335-356. Zbl 1221.13012, MR 2795742, 10.1142/S0219498811004628
Reference: [16] Gaur, A., Kumar, R.: Maximal non-Prüfer and maximal non-$\phi$-Prüfer rings.Commun. Algebra 50 (2022), 1613-1631. Zbl 1482.13015, MR 4391512, 10.1080/00927872.2021.1986517
Reference: [17] Gilmer, R.: Multiplicative Ideal Theory.Pure and Applied Mathematics 12. Marcel Dekker, New York (1972). Zbl 0248.13001, MR 0427289
Reference: [18] Gilmer, R.: Some finiteness conditions on the set of overrings of an integral domain.Proc. Am. Math. Soc. 131 (2003), 2337-2346. Zbl 1017.13009, MR 1974630, 10.1090/S0002-9939-02-06816-8
Reference: [19] Grothendieck, A.: Éléments de géométrie algébrique.Publ. Math., Inst. Hautes Étud. Sci. 4 (1960), 1-228 French. Zbl 0118.36206, MR 0217083, 10.1007/BF02684778
Reference: [20] Jaballah, A.: Subrings of $Q$.J. Sci. Technology 2 (1997), 1-13.
Reference: [21] Jaballah, A.: A lower bound for the number of intermediary rings.Commun. Algebra 27 (1999), 1307-1311. Zbl 0972.13008, MR 1669083, 10.1080/00927879908826495
Reference: [22] Jaballah, A.: Finiteness of the set of intermediary rings in normal pairs.Saitama Math. J. 17 (1999), 59-61. Zbl 1073.13500, MR 1740247
Reference: [23] Jaballah, A.: The number of overrings of an integrally closed domain.Expo. Math. 23 (2005), 353-360. Zbl 1100.13008, MR 2186740, 10.1016/j.exmath.2005.02.003
Reference: [24] Jaballah, A.: Ring extensions with some finiteness conditions on the set of intermediate rings.Czech. Math. J. 60 (2010), 117-124. Zbl 1224.13011, MR 2595076, 10.1007/s10587-010-0002-x
Reference: [25] Jaballah, A.: Numerical characterizations of some integral domains.Monatsh. Math. 164 (2011), 171-181. Zbl 1228.13023, MR 2837113, 10.1007/s00605-010-0205-0
Reference: [26] Jaballah, A.: Maximal non-Prüfer and maximal non-integrally closed subrings of a field.J. Algebra Appl. 11 (2012), Article ID 1250041, 18 pages. Zbl 1259.13004, MR 2983173, 10.1142/S0219498811005658
Reference: [27] Jaballah, A.: Graph theoretic characterizations of maximal non-valuation subrings of a field.Beitr. Algebra Geom. 54 (2013), 111-120. Zbl 1267.13013, MR 3027669, 10.1007/s13366-012-0101-y
Reference: [28] Jaballah, A.: Integral domains whose overrings are discrete valuation rings.An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 62 (2016), 361-369. Zbl 1389.13022, MR 3680213
Reference: [29] Jaballah, A.: The dimension-overrings equation and maximal ideals of integral domains.(to appear) in Beitr. Algebra Geom. 10.1007/s13366-022-00677-5
Reference: [30] Jaballah, A., Jarboui, N.: From topologies of a set to subrings of its power set.Bull. Aust. Math. Soc. 102 (2020), 15-20. Zbl 1443.05187, MR 4120745, 10.1017/S0004972720000015
Reference: [31] Matsumura, H.: Commutative Ring Theory.Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1989). Zbl 0666.13002, MR 1011461, 10.1017/CBO9781139171762
Reference: [32] Picavet, G., Picavet-L'Hermitte, M.: FIP and FCP products of ring morphisms.Palest. J. Math. 5 (2016), 63-80. Zbl 1346.13013, MR 3477616
Reference: [33] : Stacks Project. Part 1: Preliminaries. Chapter 10: Commutative Algebra. Section 10.37: Normal rings. Lemma 10.37.16.Available at https://stacks.math.columbia.edu/tag/030C.
Reference: [34] : Stacks Project. Part 1: Preliminaries. Chapter 10: Commutative Algebra. Section 10.23: Glueing propertiesLemma 10.23.1.Available at https://stacks.math.columbia.edu/tag/00HN.
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo