Previous |  Up |  Next

Article

Title: A new inclusion interval for the real eigenvalues of real matrices (English)
Author: Wang, Yinghua
Author: Song, Xinnian
Author: Gao, Lei
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 3
Year: 2023
Pages: 979-992
Summary lang: English
.
Category: math
.
Summary: By properties of Cvetković-Kostić-Varga-type (or, for short, CKV-type) \hbox {B-matrices}, a new class of nonsingular matrices called CKV-type $\overline {\text {B}}$-matrices is given, and a new inclusion interval of the real eigenvalues of real matrices is presented. It is shown that the new inclusion interval is sharper than those provided by J. M. Peña (2003), and by H. B. Li et al. (2007). We also propose a direct algorithm for computing the new inclusion interval. Numerical examples are included to illustrate the effectiveness of the obtained results. (English)
Keyword: CKV-type B-matrix
Keyword: P-matrix
Keyword: real eigenvalues localization
MSC: 15A18
MSC: 15B48
MSC: 65F15
idZBL: Zbl 07729550
idMR: MR4632870
DOI: 10.21136/CMJ.2023.0420-22
.
Date available: 2023-08-11T14:31:52Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151787
.
Reference: [1] Brauer, A.: Limits for the characteristic roots of a matrix. II.Duke Math. J. 14 (1947), 21-26. Zbl 0029.33701, MR 0020540, 10.1215/S0012-7094-47-01403-8
Reference: [2] Cvetkovic, L., Kostic, V., Varga, R. S.: A new Geršgorin-type eigenvalue inclusion set.ETNA, Electron. Trans. Numer. Anal. 18 (2004), 73-80. Zbl 1069.15016, MR 2114449
Reference: [3] Chen, X., Xiang, S.: Computation of error bounds for $P$-matrix linear complementarity problems.Math. Program. 106 (2006), 513-525. Zbl 1134.90043, MR 2216793, 10.1007/s10107-005-0645-9
Reference: [4] Wang, Y., Song, X., Gao, L.: CKV-type-B-code.Available at \brokenlink{https://github.com/{gaolei11712/CKV-type-B-code.git}}.
Reference: [5] Cvetković, D. L., Cvetković, L., Li, C.: CKV-type matrices with applications.Linear Algebra Appl. 608 (2021), 158-184. Zbl 1458.15064, MR 4142201, 10.1016/j.laa.2020.08.028
Reference: [6] Fallat, S. M., Johnson, C. R.: Sub-direct sums and positivity classes of matrices.Linear Algebra Appl. 288 (1999), 149-173. Zbl 0973.15013, MR 1670523, 10.1016/S0024-3795(98)10194-5
Reference: [7] Fiedler, M., Pták, V.: On matrices with non-positive off-diagonal elements and positive principal minors.Czech. Math. J. 12 (1962), 382-400. Zbl 0131.24806, MR 0142565, 10.21136/CMJ.1962.100526
Reference: [8] Gershgorin, S.: Über die Abgrenzung der Eigenwerte einer Matrix.Izv. Akad. Nauk SSSR, Otd. Mat. Estest. Nauk, VII. Ser. 6 (1931), 749-754 Russian. Zbl 0003.00102
Reference: [9] Li, H.-B., Huang, T.-Z., Li, H.: On some subclasses of $P$-matrices.Numer. Linear Algebra Appl. 14 (2007), 391-405. Zbl 1199.15072, MR 2312426, 10.1002/nla.524
Reference: [10] Li, C., Li, Y.: Double $B$-tensors and quasi-double $B$-tensors.Linear Algebra Appl. 466 (2015), 343-356. Zbl 1303.15034, MR 3278256, 10.1016/j.laa.2014.10.027
Reference: [11] Li, C., Liu, Q., Li, Y.: Geršgorin-type and Brauer-type eigenvalue localization sets of stochastic matrices.Linear Multilinear Algebra 63 (2015), 2159-2170. Zbl 1335.15023, MR 3401934, 10.1080/03081087.2014.986044
Reference: [12] Li, C., Wang, F., Zhao, J., Zhu, Y., Li, Y.: Criterions for the positive definiteness of real supersymmetric tensors.J. Comput. Appl. Math. 255 (2014), 1-14. Zbl 1291.15065, MR 3093400, 10.1016/j.cam.2013.04.022
Reference: [13] Liu, J., Zhang, J., Liu, Y.: The Schur complement of strictly doubly diagonally dominant matrices and its application.Linear Algebra Appl. 437 (2012), 168-183. Zbl 1248.15018, MR 2917437, 10.1016/j.laa.2012.02.001
Reference: [14] Peña, J. M.: A class of $P$-matrices with applications to the localization of the eigenvalues of a real matrix.SIAM J. Matrix Anal. Appl. 22 (2001), 1027-1037. Zbl 0986.15015, MR 1824055, 10.1137/S0895479800370342
Reference: [15] Peña, J. M.: On an alternative to Gerschgorin circles and ovals of Cassini.Numer. Math. 95 (2003), 337-345. Zbl 1032.15014, MR 2001081, 10.1007/s00211-002-0427-8
Reference: [16] Peña, J. M.: Exclusion and inclusion intervals for the real eigenvalues of positive matrices.SIAM J. Matrix Anal. Appl. 26 (2005), 908-917. Zbl 1082.15031, MR 2178204, 10.1137/04061074X
Reference: [17] Shen, S.-Q., Huang, T.-Z., Jing, Y.-F.: On inclusion and exclusion intervals for the real eigenvalues of real matrices.SIAM J. Matrix Anal. Appl. 31 (2009), 816-830. Zbl 1195.15023, MR 2530278, 10.1137/080717961
Reference: [18] Song, X., Gao, L.: CKV-type $B$-matrices and error bounds for linear complementarity problems.AIMS Math. 6 (2021), 10846-10860. Zbl 07536366, MR 4294618, 10.3934/math.2021630
Reference: [19] Varga, R. S.: Geršgorin-type eigenvalue inclusion theorems and their sharpness.ETNA, Electron. Trans. Numer. Anal. 12 (2001), 113-133. Zbl 0979.15015, MR 1832018
Reference: [20] Varga, R. S.: Geršgorin and His Circles.Springer Series in Computational Mathematics 36. Springer, Berlin (2004). Zbl 1057.15023, MR 2093409, 10.1007/978-3-642-17798-9
Reference: [21] Zhao, J., Liu, Q., Li, C., Li, Y.: Dashnic-Zusmanovich type matrices: A new subclass of nonsingular $H$-matrices.Linear Algebra Appl. 552 (2018), 277-287. Zbl 1391.15043, MR 3804489, 10.1016/j.laa.2018.04.028
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo