Previous |  Up |  Next

Article

Title: The tangent function and power residues modulo primes (English)
Author: Sun, Zhi-Wei
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 3
Year: 2023
Pages: 971-978
Summary lang: English
.
Category: math
.
Summary: Let $p$ be an odd prime, and let $a$ be an integer not divisible by $p$. When $m$ is a positive integer with $p\equiv 1\pmod {2m}$ and $2$ is an $m$th power residue modulo $p$, we determine the value of the product $\prod _{k\in R_m(p)}(1+\tan (\pi ak/p))$, where $$ R_m(p)=\{0<k<p\colon k\in \mathbb Z\ \text {is an}\ m\text {th power residue modulo}\ p\}. $$ In particular, if $p=x^2+64y^2$ with $x,y\in \mathbb Z$, then $$ \prod _{k\in R_4(p)} \Big (1+\tan \pi \frac {ak}p\Big )=(-1)^{y}(-2)^{(p-1)/8}. $$ (English)
Keyword: power residues modulo prime
Keyword: the tangent function
Keyword: identity
MSC: 05A19
MSC: 11A15
MSC: 33B10
idZBL: Zbl 07729549
idMR: MR4632869
DOI: 10.21136/CMJ.2023.0395-22
.
Date available: 2023-08-11T14:31:16Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151786
.
Reference: [1] Berndt, B. C., Evans, R. J., Williams, K. S.: Gauss and Jacobi Sums.Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, New York (1998). Zbl 0906.11001, MR 1625181
Reference: [2] Cox, D. A.: Primes of the Form $x^2+ny^2$: Fermat, Class Field Theory, and Complex Multiplication.Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs and Tracts. John Wiley & Sons, New York (1989). Zbl 0956.11500, MR 1028322, 10.1002/9781118400722
Reference: [3] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory.Graduate Texts in Mathematics 84. Springer, New York (1990). Zbl 0712.11001, MR 1070716, 10.1007/978-1-4757-2103-4
Reference: [4] Sun, Z.-W.: Trigonometric identities and quadratic residues.Publ. Math. Debr. 102 (2023), 111-138. Zbl 7650970, MR 4556502, 10.5486/PMD.2023.9352
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo