Title:
|
Coloring triangles and rectangles (English) |
Author:
|
Zapletal, Jindřich |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
64 |
Issue:
|
1 |
Year:
|
2023 |
Pages:
|
83-96 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is consistent that ZF + DC holds, the hypergraph of rectangles on a given Euclidean space has countable chromatic number, while the hypergraph of equilateral triangles on $\mathbb{R}^2$ does not. (English) |
Keyword:
|
real algebraic geometry |
Keyword:
|
algebraic hypergraph |
Keyword:
|
chromatic number |
Keyword:
|
geometric set theory |
Keyword:
|
consistency result |
MSC:
|
03E35 |
MSC:
|
05C15 |
MSC:
|
14P99 |
idZBL:
|
Zbl 07790584 |
idMR:
|
MR4631792 |
DOI:
|
10.14712/1213-7243.2023.020 |
. |
Date available:
|
2023-08-28T09:47:05Z |
Last updated:
|
2025-04-07 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151803 |
. |
Reference:
|
[1] Ceder J.: Finite subsets and countable decompositions of Euclidean spaces.Rev. Roumaine Math. Pures Appl. 14 (1969), 1247–1251. MR 0257307 |
Reference:
|
[2] Erdös P., Kakutani S.: On non-denumerable graphs.Bull. Amer. Math. Soc. 49 (1943), 457–461. MR 0008136, 10.1090/S0002-9904-1943-07954-2 |
Reference:
|
[3] Erdös P., Komjáth P.: Countable decompositions of $\mathbb{R}^2$ and $\mathbb{R}^3$.Discrete Comput. Geom. 5 (1990), no. 4, 325–331. MR 1043714 |
Reference:
|
[4] Ihoda J. I., Shelah S.: Souslin forcing.J. Symbolic Logic 53 (1998), no. 4, 1188–1207. MR 0973109, 10.2307/2274613 |
Reference:
|
[5] Jech T.: Set Theory.Springer Monographs in Mathematics, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513 |
Reference:
|
[6] Larson P., Zapletal J.: Geometric Set Theory.Mathematical Surveys and Monographs, 248, American Mathematical Society, Providence, 2020. MR 4249448, 10.1090/surv/248 |
Reference:
|
[7] Marker D.: Model Theory: An Introduction.Graduate Texts in Mathematics, 217, Springer, New York, 2002. MR 1924282 |
Reference:
|
[8] Schmerl J. H.: Avoidable algebraic subsets of Euclidean space.Trans. Amer. Math. Soc. 352 (2000), no. 6, 2479–2489. MR 1608502, 10.1090/S0002-9947-99-02331-4 |
Reference:
|
[9] Zapletal J.: Noetherian spaces in choiceless set theory.available at arXiv:2101.03434v3 [math.LO] (2022), 23 pages. |
. |