Previous |  Up |  Next

Article

Title: Coloring triangles and rectangles (English)
Author: Zapletal, Jindřich
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 64
Issue: 1
Year: 2023
Pages: 83-96
Summary lang: English
.
Category: math
.
Summary: It is consistent that ZF + DC holds, the hypergraph of rectangles on a given Euclidean space has countable chromatic number, while the hypergraph of equilateral triangles on $\mathbb{R}^2$ does not. (English)
Keyword: real algebraic geometry
Keyword: algebraic hypergraph
Keyword: chromatic number
Keyword: geometric set theory
Keyword: consistency result
MSC: 03E35
MSC: 05C15
MSC: 14P99
idZBL: Zbl 07790584
idMR: MR4631792
DOI: 10.14712/1213-7243.2023.020
.
Date available: 2023-08-28T09:47:05Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151803
.
Reference: [1] Ceder J.: Finite subsets and countable decompositions of Euclidean spaces.Rev. Roumaine Math. Pures Appl. 14 (1969), 1247–1251. MR 0257307
Reference: [2] Erdös P., Kakutani S.: On non-denumerable graphs.Bull. Amer. Math. Soc. 49 (1943), 457–461. MR 0008136, 10.1090/S0002-9904-1943-07954-2
Reference: [3] Erdös P., Komjáth P.: Countable decompositions of $\mathbb{R}^2$ and $\mathbb{R}^3$.Discrete Comput. Geom. 5 (1990), no. 4, 325–331. MR 1043714
Reference: [4] Ihoda J. I., Shelah S.: Souslin forcing.J. Symbolic Logic 53 (1998), no. 4, 1188–1207. MR 0973109, 10.2307/2274613
Reference: [5] Jech T.: Set Theory.Springer Monographs in Mathematics, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513
Reference: [6] Larson P., Zapletal J.: Geometric Set Theory.Mathematical Surveys and Monographs, 248, American Mathematical Society, Providence, 2020. MR 4249448, 10.1090/surv/248
Reference: [7] Marker D.: Model Theory: An Introduction.Graduate Texts in Mathematics, 217, Springer, New York, 2002. MR 1924282
Reference: [8] Schmerl J. H.: Avoidable algebraic subsets of Euclidean space.Trans. Amer. Math. Soc. 352 (2000), no. 6, 2479–2489. MR 1608502, 10.1090/S0002-9947-99-02331-4
Reference: [9] Zapletal J.: Noetherian spaces in choiceless set theory.available at arXiv:2101.03434v3 [math.LO] (2022), 23 pages.
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo