Title: | Metric trees in the Gromov--Hausdorff space (English) |
Author: | Ishiki, Yoshito |
Language: | English |
Journal: | Commentationes Mathematicae Universitatis Carolinae |
ISSN: | 0010-2628 (print) |
ISSN: | 1213-7243 (online) |
Volume: | 64 |
Issue: | 1 |
Year: | 2023 |
Pages: | 73-82 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Using the wedge sum of metric spaces, for all compact metrizable spaces, we construct a topological embedding of the compact metrizable space into the set of all metric trees in the Gromov--Hausdorff space with finite prescribed values. As its application, we show that the set of all metric trees is path-connected and all its nonempty open subsets have infinite topological dimension. (English) |
Keyword: | metric tree |
Keyword: | Gromov--Hausdorff distance |
MSC: | 51F99 |
MSC: | 53C23 |
idZBL: | Zbl 07790583 |
idMR: | MR4631791 |
DOI: | 10.14712/1213-7243.2023.012 |
. | |
Date available: | 2023-08-28T09:45:43Z |
Last updated: | 2024-02-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151805 |
. | |
Reference: | [1] Berestovskiĭ V. N.: On the Urysohn's $\mathbb{R}$-tree.Sibirsk. Mat. Zh. 60 (2019), no. 1, 14–27 (Russian); translation in Sib. Math. J. 60 (2019), no. 1, 10–19. MR 3919159, 10.33048/smzh.2019.60.102 |
Reference: | [2] Bridson M. R., Haefliger A.: Metric Spaces of Non-positive Curvature.Grundlehren der mathematischen Wissenschaften, 319, Springer, Berlin, 1999. MR 1744486 |
Reference: | [3] Evans S. N.: Probability and Real Trees.Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, 2005, Lecture Notes in Mathematics, 1920, Springer, Berlin, 2008. MR 2351587 |
Reference: | [4] Herron D. A.: Gromov–Hausdorff distance for pointed metric spaces.J. Anal. 24 (2016), no. 1, 1–38. MR 3755806, 10.1007/s41478-016-0001-x |
Reference: | [5] Ishiki Y.: An interpolation of metrics and spaces of metrics.available at arXiv:2003.13227v1 [math.MG] (2020), 23 pages. |
Reference: | [6] Ishiki Y.: Branching geodesics of the Gromov–Hausdorff distance.Anal. Geom. Metr. Spaces 10 (2022), no. 1, 109–128. MR 4462891, 10.1515/agms-2022-0136 |
Reference: | [7] Ishiki Y.: Continua in the Gromov–Hausdorff space.Topology Appl. 312 (2022), Paper No. 108058, 10 pages. MR 4387932, 10.1016/j.topol.2022.108058 |
Reference: | [8] Ishiki Y.: Fractal dimensions in the Gromov–Hausdorff space.available at arXiv: 2110.01881v5 [math.MG] (2022), 24 pages. MR 4387932 |
Reference: | [9] Jansen D.: Notes on pointed Gromov–Hausdorff convergence.available at arXiv: 1703.09595v1 [math.MG] (2017), 48 pages. |
Reference: | [10] Kelly J. L.: General Topology.Graduate Texts in Mathematics, 27, Springer, New York, 1955. MR 0370454 |
Reference: | [11] Mémoli F., Wan Z.: Characterization of Gromov-type geodesics.available at arXiv: 2105.05369v2 [math.MG] (2021), 58 pages. MR 4568095 |
Reference: | [12] Urysohn P.: Beispiel eines nirgends separablen metrischen raumes.Fund. Math. 9 (1927), no. 1, 119–121. 10.4064/fm-9-1-119-121 |
. |
Fulltext not available (moving wall 24 months)