Previous |  Up |  Next

Article

Title: Revisiting linear Weingarten spacelike submanifolds immersed in a locally symmetric semi-Riemannian space (English)
Author: Barboza, Weiller F. C.
Author: de Lima, Henrique F.
Author: Velásquez, Marco A. L.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 64
Issue: 1
Year: 2023
Pages: 39-61
Summary lang: English
.
Category: math
.
Summary: In this paper, we deal with $n$-dimensional complete linear Weingarten spacelike submanifolds immersed with parallel normalized mean curvature vector field and flat normal bundle in a locally symmetric semi-Riemannian space $L_{p}^{n+p}$ of index $p>1$, which obeys some curvature constraints (such an ambient space can be regarded as an extension of a semi-Riemannian space form). Under appropriate hypothesis, we are able to prove that such a spacelike submanifold is either totally umbilical or isometric to an isoparametric submanifold of the ambient space. For this, we use three main core analytical tools: a suitable version of the Omori--Yau maximum principle, parabolicity with respect to a modified Cheng--Yau operator and a certain integrability property. (English)
Keyword: locally symmetric semi-Riemannian space
Keyword: mean curvature vector field
Keyword: complete linear Weingarten spacelike submanifold
Keyword: totally umbilical submanifold
Keyword: isoparametric submanifold
Keyword: $\mathcal L$-parabolicity
MSC: 53C21
MSC: 53C42
MSC: 53C50
idZBL: Zbl 07790581
idMR: MR4631789
DOI: 10.14712/1213-7243.2023.013
.
Date available: 2023-08-28T09:42:27Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151807
.
Reference: [1] Alías L. J., Mastrolia P., Rigoli M.: Maximum Principles and Geometric Applications.Springer Monographs in Mathematics, Springer, Cham, 2016. MR 3445380
Reference: [2] Araújo J. G., Barboza W. F., de Lima H. F., Velásquez M. A. L.: On the linear Weingarten spacelike submanifolds immersed in a locally symmetric semi-Riemannian space.Beitr. Algebra Geom. 61 (2020), no. 2, 267–282. MR 4090931, 10.1007/s13366-019-00469-4
Reference: [3] Araújo J. G., de Lima H. F., dos Santos F. R., Velásquez M. A. L.: Characterizations of complete linear Weingarten spacelike submanifolds in a locally symmetric semi-Riemannian manifold.Extracta Math. 32 (2017), no. 1, 55–81. MR 3726524
Reference: [4] Baek J. O., Cheng Q.-M., Suh Y. J.: Complete space-like hypersurface in locally symmetric Lorentz spaces.J. Geom. Phys. 49 (2004), no. 2, 231–247. MR 2077302, 10.1016/S0393-0440(03)00090-1
Reference: [5] Beem J. K., Ehrlich P. E., Easley K. L.: Global Lorentzian Geometry.Monographs and Textbooks in Pure and Applied Mathematics, 202, Marcel Dekker, New York, 1996. Zbl 0846.53001, MR 1384756
Reference: [6] Brendle S.: Einstein manifolds with nonnegative isotropic curvature are locally symmetric.Duke Math. J. 151 (2010), no. 1, 1–21. MR 2573825, 10.1215/00127094-2009-061
Reference: [7] Calabi E.: Examples of Bernstein problems for some nonlinear equations.Proc. Sympos. Pure Math. 15 (1970), 223–230. MR 0264210
Reference: [8] Caminha A.: The geometry of closed conformal vector fields on Riemannian spaces.Bull. Braz. Math. Soc. (N.S.) 42 (2011), no. 2, 277–300. Zbl 1242.53068, MR 2833803, 10.1007/s00574-011-0015-6
Reference: [9] Cheng S. Y., Yau S. T.: Maximal space-like hypersurfaces in the Lorentz–Minkowski space.Ann. of Math. (2) 104 (1976), no. 3, 407–419. MR 0431061, 10.2307/1970963
Reference: [10] Cheng S. Y., Yau S. T.: Hypersurfaces with constant scalar curvature.Math. Ann. 225 (1977), no. 3, 195–204. Zbl 0349.53041, MR 0431043, 10.1007/BF01425237
Reference: [11] Chern S. S., do Carmo M. P., Kobayashi S.: Minimal submanifolds of a sphere with second fundamental form of constant length.Global Analysis, Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, 1968, Amer. Math. Soc., Providence, 1970, pages 223–230. MR 0273546
Reference: [12] de Lima H. F., de Lima J. R.: Characterizations of linear Weingarten spacelike hypersurfaces in Einstein spacetimes.Glasg. Math. J. 55 (2013), no. 3, 567–579. MR 3084661, 10.1017/S0017089512000754
Reference: [13] de Lima H. F., de Lima J. R.: Complete linear Weingarten spacelike hypersurfaces immersed in a locally symmetric Lorentz space.Results Math. 63 (2013), no. 3–4, 865–876. MR 3057342, 10.1007/s00025-012-0237-y
Reference: [14] de Lima H. F., dos Santos F. R., Araújo J. G., Velásquez M. A. L.: Complete maximal spacelike submanifolds immersed in a locally symmetric semi-Riemannian space.Houston J. Math. 43 (2017), no. 4, 1099–1110. MR 3766359
Reference: [15] de Lima H. F., dos Santos F. R., Gomes J. N., Velásquez M. A. L.: On the complete spacelike hypersurfaces immersed with two distinct principal curvatures in a locally symmetric Lorentz space.Collect. Math. 67 (2016), no. 3, 379–397. MR 3536051, 10.1007/s13348-015-0145-z
Reference: [16] de Lima H. F., dos Santos F. R., Velásquez M. A. L.: On the umbilicity of complete linear Weingarten spacelike hypersurfaces immersed in a locally symmetric Lorentz space.São Paulo J. Math. Sci. 11 (2017), no. 2, 456–470. MR 3716700, 10.1007/s40863-017-0075-7
Reference: [17] Galloway G. J., Senovilla J. M. M.: Singularity theorems based on trapped submanifolds of arbitrary co-dimension.Classical Quantum Gravity 27 (2010), no. 15, 152002, 10 pages. MR 2659235, 10.1088/0264-9381/27/15/152002
Reference: [18] Grigor'yan A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds.Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 2, 135–249. Zbl 0927.58019, MR 1659871, 10.1090/S0273-0979-99-00776-4
Reference: [19] Hawking S. W., Ellis G. F. R.: The Large Scale Structure of Space-time.Cambridge Monographs on Mathematical Physics, 1, Cambridge University Press, London, 1973. MR 4615777
Reference: [20] Ishihara T.: Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curvature.Michigan Math. J. 35 (1988), no. 3, 345–352. MR 0978304, 10.1307/mmj/1029003815
Reference: [21] Liang Z., Zhang X.: Spacelike hypersurfaces with negative total energy in de Sitter spacetime.J. Math. Phys. 53 (2012), no. 2, 022502, 10 pages. MR 2920460, 10.1063/1.3682242
Reference: [22] Liu J., Sun Z.: On spacelike hypersurfaces with constant scalar curvature in locally symmetric Lorentz spaces.J. Math. Anal. App. 364 (2010), no. 1, 195–203. MR 2576063, 10.1016/j.jmaa.2009.10.029
Reference: [23] Marsden J. E., Tipler F. J.: Maximal hypersurfaces and foliations of constant mean curvature in general relativity.Phys. Rep. 66 (1980), no. 3, 109–139. MR 0598585, 10.1016/0370-1573(80)90154-4
Reference: [24] Micallef M. J., Wang M. Y.: Metrics with nonnegative isotropic curvature.Duke Math. J. 72 (1993), no. 3, 649–672. MR 1253619, 10.1215/S0012-7094-93-07224-9
Reference: [25] Nishikawa S.: On maximal spacelike hypersurfaces in a Lorentzian manifold.Nagoya Math. J. 95 (1984), 117–124. MR 0759469, 10.1017/S0027763000021024
Reference: [26] O'Neill B.: Semi-Riemannian Geometry.With Applications to Relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983. MR 0719023
Reference: [27] Penrose R.: Gravitational collapse and space-time singularities.Phys. Rev. Lett. 14 (1965), 57–59. MR 0172678, 10.1103/PhysRevLett.14.57
Reference: [28] Pigola S., Rigoli M., Setti A. G.: A Liouville-type result for quasi-linear elliptic equations on complete Riemannian manifolds.J. Funct. Anal. 219 (2005), no. 2, 400–432. MR 2109258, 10.1016/j.jfa.2004.05.009
Reference: [29] Pigola S., Rigoli M., Setti A. G.: Maximum Principles on Riemannian Manifolds and Applications.Mem. Amer. Math. Soc., 174, no. 822, 2005. MR 2116555
Reference: [30] Senovilla J. M. M.: Singularity theorems in general relativity: Achievements and open questions.in Einstein and the Changing Worldviews of Physics, Einstein Studies, 12, Birkhäuser, Boston, 2011, pages 305–316.
Reference: [31] Stumbles S. M.: Hypersurfaces of constant mean extrinsic curvature.Ann. Physics 133 (1981), no. 1, 28–56. MR 0626082, 10.1016/0003-4916(81)90240-2
Reference: [32] Tod K. P.: Four-dimensional D'Atri Einstein spaces are locally symmetric.Differential Geom. Appl. 11 (1999), no. 1, 55–67. MR 1702467, 10.1016/S0926-2245(99)00024-8
Reference: [33] Treibergs A. E.: Entire spacelike hypersurfaces of constant mean curvature in Minkowski space.Invent. Math. 66 (1982), no. 1, 39–56. MR 0652645, 10.1007/BF01404755
Reference: [34] Xu H.-W., Gu J.-R.: Rigidity of Einstein manifolds with positive scalar curvature.Math. Ann. 358 (2014), no. 1–2, 169–193. MR 3157995, 10.1007/s00208-013-0957-7
Reference: [35] Yau S. T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry.Indiana Univ. Math. J. 25 (1976), no. 7, 659–670. MR 0417452, 10.1512/iumj.1976.25.25051
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo