Previous |  Up |  Next

Article

Title: Kernels of Toeplitz operators on the Bergman space (English)
Author: Lee, Young Joo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 4
Year: 2023
Pages: 1119-1130
Summary lang: English
.
Category: math
.
Summary: A Coburn theorem says that a nonzero Toeplitz operator on the Hardy space is one-to-one or its adjoint operator is one-to-one. We study the corresponding problem for certain Toeplitz operators on the Bergman space. (English)
Keyword: Toeplitz operator
Keyword: Bergman space
MSC: 32A36
MSC: 47B35
DOI: 10.21136/CMJ.2023.0402-22
.
Date available: 2023-11-23T12:22:58Z
Last updated: 2023-11-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151950
.
Reference: [1] Chen, Y., Izuchi, K. J., Lee, Y. J.: A Coburn type theorem on the Hardy space of the bidisk.J. Math. Anal. Appl. 466 (2018), 1043-1059. Zbl 06897108, MR 3818158, 10.1016/j.jmaa.2018.06.034
Reference: [2] Choe, B. R., Lee, Y. J.: Commuting Toeplitz operators on the harmonic Bergman space.Mich. Math. J. 46 (1999), 163-174. Zbl 0969.47023, MR 1682896, 10.1307/mmj/1030132367
Reference: [3] Coburn, L. A.: Weyl's theorem for nonnormal operators.Mich. Math. J. 13 (1966), 285-288. Zbl 0173.42904, MR 0201969, 10.1307/mmj/1031732778
Reference: [4] Guo, K., Zhao, X., Zheng, D.: The spectral picture of Bergman Toeplitz operators with harmonic polynomial symbols.Available at https://arxiv.org/abs/2007.07532 (2023), 21 pages. MR 4666991
Reference: [5] Lee, Y. J.: A Coburn type theorem for Toeplitz operators on the Dirichlet space.J. Math. Anal. Appl. 414 (2014), 237-242. Zbl 1308.47037, MR 3165305, 10.1016/j.jmaa.2014.01.020
Reference: [6] McDonald, G., Sundberg, C.: Toeplitz operators on the disc.Indiana Univ. Math. J. 28 (1979), 595-611. Zbl 0439.47022, MR 0542947, 10.1512/iumj.1979.28.28042
Reference: [7] Perälä, A., Virtanen, J. A.: A note on the Fredholm properties of Toeplitz operators on weighted Bergman spaces with matrix-valued symbols.Oper. Matrices 5 (2011), 97-106. Zbl 1262.47046, MR 2798798, 10.7153/oam-05-06
Reference: [8] Sundberg, C., Zheng, D.: The spectrum and essential spectrum of Toeplitz operators with harmonic symbols.Indiana Univ. Math. J. 59 (2010), 385-394. Zbl 1195.47019, MR 2666483, 10.1512/iumj.2010.59.3799
Reference: [9] Vukotić, D.: A note on the range of Toeplitz operators.Integr. Equations Oper. Theory 50 (2004), 565-567. Zbl 1062.47034, MR 2105965, 10.1007/s00020-004-1312-x
Reference: [10] Zhu, K.: Operator Theory in Function Spaces.Mathematical Surveys and Monographs 138. AMS, Providence (2007). Zbl 1123.47001, MR 2311536, 10.1090/surv/138
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo