Previous |  Up |  Next

Article

Title: Binomial sums via Bailey's cubic transformation (English)
Author: Chu, Wenchang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 4
Year: 2023
Pages: 1131-1150
Summary lang: English
.
Category: math
.
Summary: By employing one of the cubic transformations (due to W. N. Bailey (1928)) for the $_3F_2(x)$-series, we examine a class of $_3F_2(4)$-series. Several closed formulae are established by means of differentiation, integration and contiguous relations. As applications, some remarkable binomial sums are explicitly evaluated, including one proposed recently as an open problem. (English)
Keyword: hypergeometric series
Keyword: Bailey's cubic transformation
Keyword: contiguous relation
Keyword: reversal series
Keyword: binomial coefficient
MSC: 05A19
MSC: 11B65
MSC: 33C20
DOI: 10.21136/CMJ.2023.0429-22
.
Date available: 2023-11-23T12:23:35Z
Last updated: 2023-11-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151951
.
Reference: [1] Bailey, W. N.: Products of generalized hypergeometric series.Proc. Lond. Math. Soc. (2) 28 (1928), 242-254 \99999JFM99999 54.0392.04. MR 1575853, 10.1112/plms/s2-28.1.242
Reference: [2] Bailey, W. N.: Generalized Hypergeometric Series.Cambridge Tracts in Mathematics and Mathematical Physics 32. Cambridge University Press, Cambridge (1935). Zbl 0011.02303, MR 0185155
Reference: [3] Campbell, J. M.: Solution to a problem due to Chu and Kiliç.Integers 22 (2022), Article ID A46, 8 pages. Zbl 1493.11044, MR 4430897
Reference: [4] Chen, X., Chu, W.: Closed formulae for a class of terminating $_3F_2(4)$-series.Integral Transform Spec. Funct. 28 (2017), 825-837. Zbl 1379.33012, MR 3724507, 10.1080/10652469.2017.1376194
Reference: [5] Chu, W.: Inversion techniques and combinatorial identities: A quick introduction to hypergeometric evaluations.Runs and Patterns in Probability Mathematics and its Applications 283. Kluwer, Dordrecht (1994), 31-57. Zbl 0830.05006, MR 1292876
Reference: [6] Chu, W.: Inversion techniques and combinatorial identities: Balanced hypergeometric series.Rocky Mt. J. Math. 32 (2002), 561-587. Zbl 1038.33002, MR 1934906, 10.1216/rmjm/1030539687
Reference: [7] Chu, W.: Terminating $_2F_1(4)$-series perturbed by two integer parameters.Proc. Am. Math. Soc. 145 (2017), 1031-1040. Zbl 1352.33001, MR 3589303, 10.1090/proc/13293
Reference: [8] Chu, W.: Further identities on Catalan numbers.Discrete Math. 341 (2018), 3159-3164. Zbl 1395.05024, MR 3854125, 10.1016/j.disc.2018.07.028
Reference: [9] Chu, W.: Alternating convolutions of Catalan numbers.Bull. Braz. Math. Soc. (N.S.) 53 (2022), 95-105. Zbl 1484.05012, MR 4379425, 10.1007/s00574-021-00252-x
Reference: [10] Chu, W., Kiliç, E.: Binomial sums involving Catalan numbers.Rocky Mt. J. Math. 51 (2021), 1221-1225. Zbl 1473.05017, MR 4298842, 10.1216/rmj.2021.51.1221
Reference: [11] Gessel, I. M.: Finding identities with the WZ method.J. Symb. Comput. 20 (1995), 537-566. Zbl 0908.33004, MR 1395413, 10.1006/jsco.1995.1064
Reference: [12] Gessel, I. M., Stanton, D.: Strange evaluations of hypergeometric series.SIAM J. Math. Anal. 13 (1982), 295-308. Zbl 0486.33003, MR 0647127, 10.1137/0513021
Reference: [13] Mikić, J.: Two new identities involving the Catalan numbers and sign-reversing involutions.J. Integer Seq. 22 (2019), Article ID 19.7.7, 10 pages. Zbl 1431.05020, MR 4040982
Reference: [14] Zeilberger, D.: Forty ``strange" computer-discovered and computer-proved (of course) hypergeometric series evaluations.Available at {\def\let \relax \brokenlink{https://sites.math.rutgers.edu/ zeilberg/mamarim/mamarimhtml/strange.html}}\kern0pt (2004).
Reference: [15] Zhou, R. R., Chu, W.: Identities on extended Catalan numbers and their $q$-analogs.Graphs Comb. 32 (2016), 2183-2197. Zbl 1351.05034, MR 3543225, 10.1007/s00373-016-1694-y
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo