Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
mutually permutable subgroup; periodic linear group
Summary:
The aim is to investigate the behaviour of (homomorphic images of) periodic linear groups which are factorized by mutually permutable subgroups. Mutually permutable subgroups have been extensively investigated in the finite case by several authors, among which, for our purposes, we only cite J. C. Beidleman and H. Heineken (2005). In a previous paper of ours (see M. Ferrara, M. Trombetti (2022)) we have been able to generalize the first main result of J. C. Beidleman, H. Heineken (2005) to periodic linear groups (showing that the commutator subgroups and the intersection of mutually permutable subgroups are subnormal subgroups of the whole group), and, in this paper, we completely generalize all other main results of J. C. Beidleman, H. Heineken (2005) to (homomorphic images of) periodic linear groups.
References:
[1] Alejandre, M. J., Ballester-Bolinches, A., Cossey, J.: Permutable products of supersoluble groups. J. Algebra 276 (2004), 453-461. DOI 10.1016/j.jalgebra.2003.01.002 | MR 2058452 | Zbl 1083.20019
[2] Amberg, B., Franciosi, S., Giovanni, F. de: Products of Groups. Oxford Mathematical Monographs. Clarendon Press, Oxford (1992). MR 1211633 | Zbl 0774.20001
[3] Asaad, M., Shaalan, A.: On the supersolvability of finite groups. Arch. Math. 53 (1989), 318-326. DOI 10.1007/BF01195210 | MR 1015994 | Zbl 0685.20018
[4] Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of Finite Groups. de Gruyter Expositions in Mathematics 53. Walter de Gruyter, Berlin (2010). DOI 10.1515/9783110220612 | MR 2762634 | Zbl 1206.20019
[5] Beidleman, J., Heineken, H.: Totally permutable torsion subgroups. J. Group Theory 2 (1999), 377-392. DOI 10.1515/jgth.1999.027 | MR 1718750 | Zbl 0941.20026
[6] Beidleman, J. C., Heineken, H.: Mutually permutable subgroups and group classes. Arch. Math. 85 (2005), 18-30. DOI 10.1007/s00013-005-1200-2 | MR 2155106 | Zbl 1103.20015
[7] Celentani, M. R., Leone, A., Robinson, D. J. S.: The Maier-Schmid problem for infinite groups. J. Algebra 301 (2006), 294-307. DOI 10.1016/j.jalgebra.2005.06.002 | MR 2230333 | Zbl 1121.20029
[8] Falco, M. De, Giovanni, F. de, Musella, C., Sysak, Y. P.: On the upper central series of infinite groups. Proc. Am. Math. Soc. 139 (2011), 385-389. DOI 10.1090/S0002-9939-2010-10625-1 | MR 2736322 | Zbl 1228.20023
[9] Giovanni, F. de, Ialenti, R.: On groups with finite abelian section rank factorized by mutually permutable subgroups. Commun. Algebra 44 (2016), 118-124. DOI 10.1080/00927872.2014.958850 | MR 3413675 | Zbl 1344.20045
[10] Giovanni, F. de, Trombetti, M.: Infinite minimal non-hypercyclic groups. J. Algebra Appl. 14 (2015), Article ID 1550143, 15 pages. DOI 10.1142/S0219498815501431 | MR 3392592 | Zbl 1331.20044
[11] Giovanni, F. de, Trombetti, M., Wehrfritz, B. A. F.: Subnormality in linear groups. J. Pure Appl. Algebra 227 (2023), Article ID 107185, 16 pages. DOI 10.1016/j.jpaa.2022.107185 | MR 4457897 | Zbl 07584334
[12] Ferrara, M., Trombetti, M.: On groups factorized by mutually permutable subgroups. Result. Math. 77 (2022), Article ID 211, 15 pages. DOI 10.1007/s00025-022-01734-0 | MR 4482267 | Zbl 07595688
[13] Franciosi, S., Giovanni, F. de: Groups with many supersoluble subgroups. Ric. Mat. 40 (1991), 321-333. MR 1194163 | Zbl 0818.20041
[14] Hall, P., Higman, G.: On the $p$-length of $p$-soluble groups and reduction theorems for Burnside's problem. Proc. Lond. Math. Soc., III. Ser. 6 (1956), 1-42. DOI 10.1112/plms/s3-6.1.1 | MR 0072872 | Zbl 0073.25503
[15] Phillips, R. E., Rainbolt, J. G.: Images of periodic linear groups. Arch. Math. 71 (1998), 97-106. DOI 10.1007/s000130050239 | MR 1631464 | Zbl 0914.20041
[16] Robinson, D. J. S.: Finiteness Conditions and Generalized Soluble Groups. Part 1. Ergebnisse der Mathematik und ihrer Grenzgebiete 62. Springer, Berlin (1972). DOI 10.1007/978-3-662-07241-7 | MR 0332989 | Zbl 0243.20032
[17] Schmidt, R.: Subgroup Lattices of Groups. De Gruyter Expositions in Mathematics 14. Walter De Gruyter, Berlin (1994). DOI 10.1515/9783110868647 | MR 1292462 | Zbl 0843.20003
[18] Shirvani, M., Wehrfritz, B. A. F.: Skew Linear Groups. London Mathematical Society Lecture Note Series 118. Cambridge University Press, Cambridge (1986). MR 0883801 | Zbl 0602.20046
[19] Wehfritz, B. A. F.: Supersoluble and locally supersoluble linear groups. J. Algebra 17 (1971), 41-58. DOI 10.1016/0021-8693(71)90041-X | MR 0276368 | Zbl 0206.31302
[20] Wehfritz, B. A. F.: Infinite Linear Groups: An Account of the Group-Theoretic Properties of Infinite Groups of Matrices. Ergebnisse der Mathematik und ihrer Grenzgebiete 76. Springer, Berlin (1973). DOI 10.1007/978-3-642-87081-1 | MR 0335656 | Zbl 0261.20038
Partner of
EuDML logo